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De�nition of a function

De�nition: A relation f ⊆ X × Y is called a function if and

only if for each element of x ∈ X there exists exactly one y ∈ Y

so that (x , y) ∈ f .

Function is denoted as follows:

f : X → Y

X is called the domain of f and Y is called co-domain of f.
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Functions, cont.

Elements of X (domain) are called arguments and elements of Y

(co-domain) are called values of the function.

Since there is exactly one value ofor each argument, it is

possible to write:

f (x) = y

for particular x ∈ X and y ∈ Y .

Function is also called mapping of X into Y.
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Set of all functions

Set of all possible functions that have domain X and co-domain

Y is denoted as:

Y X
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De�tion of function written with mathematical
symbols

De�nition (in natural language): A relation f ⊆ X × Y is called

a function if and only if for each element of x ∈ X there exists

exactly one y ∈ Y so that (x , y) ∈ f .

Let's translate this to mathematical symbols:

�for each element of x ∈ X there exists y ∈ Y so that (x , y) ∈ f �:

∀x∈X [∃y∈Y (x , y) ∈ f ]

But how to express that there exists exactly one such y (not more)?:

∧[∀y ,y ′∈Y ((x , y) ∈ f ∧ (x , y ′) ∈ f )⇒ y = y ′]

The resulting expression:

∀x∈X [∃y∈Y (x , y) ∈ f ] ∧ [∀y ,y ′∈Y ((x , y) ∈ f ∧ (x , y ′) ∈ f )⇒ y = y ′]
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Example

X = {x ∈ N : x < 5}
Is the following a function?

{(0, 1), (1, 2), (2, 3), (3, 4)}
{(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)}
{(0, 1), (1, 2), (2, 3), (3, 4), (4, 0), (0, 2)}
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Equality of functions

Two functions f : X → Y and g : A→ B are equal i� the

following conditions hold:

X = A (equality of domains), Y = B (equality of

co-domains)

∀x∈X f (x) = g(x)
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Restriction and extension of a function

Let f : X → Y and f ′ : X ′ → Y and X ⊆ X ′

If f(x)=f'(x) for all x ∈ X we say that f' is an extension of f

and f is a restriction of f'
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Graph of a function

Given a function f : X → Y if the set of pairs

f = {(x , y) ∈ X × Y : y = f (x)} can be naturally mapped to

points in the plane with Cartesian coordinates (e.g. when

X=Y=R), we can view the f as its graph.
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Injection

A function f : X → Y is injection i� the following holds:

∀x ,x ′∈X x 6= x ′ ⇒ f (x) 6= f (x ′)

An injection is also called a �one-to-one� function.
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Example

Is the following an injection?

f : Z → Z , f (x) = x2

f : N → N, f (x) = x2
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Example
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Surjection

A function f : X → Y is surjection i� the following holds:

∀y∈Y ∃x∈X y = f (x)

A surjection is also called �onto mapping� (or �f maps X onto

Y�)
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Example

Is the following a surjection?

f : R → Z f (x) = �oor(x)
f : R → R , f (x) = 1/(1+ e−x)
f : R → [0, 1], f (x) = 1/(1+ e−x)
f : R → (0, 1), f (x) = 1/(1+ e−x)
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Bijection

A function f : X → Y is bijection i� it is injection and

surjection.
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Example

Is the following a bijection?

f : R → Z f (x) = �oor(x)
f : R → R , f (x) = 1/(1+ e−x)
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f : R → (0, 1), f (x) = 1/(1+ e−x)
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Inverse of a function

If f : X → Y is an injection, then the inverse of this function is

the (unique) function f −1 : Y → X de�ned as follows:

f −1(y) = x ⇔ f (x) = y

questions:

is inverse of injection an injection? (yes)

is inverse of bijecion a bijection? (yes)
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Example of inverse

f : R → (0, 1), f (x) = 1/(1+ e−x)
f (x) = x2 for non-negative reals

f (x) = 2x , for non-negative reals
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Composition of two functions

For two functions f : X → Y and g : Y → Z their

composition is the function g ◦ f : X → Z de�ned as follows

for any x ∈ X :

(g ◦ f )(x) = g(f (x))

(Notice the order of the functions in the denotation g ◦ f )

is composition commutative? (i.e. is g ◦ f = f ◦ g?)(no)
is compostion associative? (i.e. is h ◦ (g ◦ f ) = (h ◦ g) ◦ f ?)(yes)
Notice: non-commutativitiy and associativity of compositon
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De�nition of (in�nite) sequence

A sequence a0, a1, a2, a3, . . . is a function whose domain is the

set of natural numbers N a : N → X , where X is some set.

For any number i ∈ N a(i) is usually denoted as ai .

In particular, if X is a number set, the sequence is numeric (e.g.

for X = R it is a real sequence.
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Image of a set

For a function f : X → Y and a set A ⊆ X the image of A is

the set f (A) ⊆ Y de�ned as follows:

f (A) = {y ∈ Y : ∃x∈A y = f (x)}

(to avoid misunderstanding of the denotation f (A) we assume

that A /∈ X )
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Inverse image of a set

For a function f : X → Y and a set B ⊆ Y the inverse image

of B is the set f −1(B) ⊆ X de�ned as follows:

f −1(B) = {x ∈ X : f (x) ∈ B}

(to avoid misunderstanding of the denotation f −1(B) we
assume that B /∈ Y )
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Image of union

Assume that f : X → Y .

For any sets A,A′ ⊆ X the following holds:

f (A ∪ A′) = f (A) ∪ f (A′)
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Image of intersection

Assume that f : X → Y .

For any sets A,A′ ⊆ X the following holds:

f (A ∩ A′) ⊆ f (A) ∩ f (A′)

(the equality does not hold in general: example?)
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Example

f : Z → N, f (x) = x2

A is the set of negative integers, A′ is the set of positive

integers.

What is A ∩ A′?
What is f (A ∩ A′)?
What is f (A)?
What is f (A′)?
What is f (A) ∩ f (A′)?
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Image of intersection cont.

What property of the function f would su�ce for the equality:

f (A ∩ A′) = f (A) ∩ f (A′)

?

The above equality holds if the function f is an injection.



Discrete
Mathematics

(c) Marcin
Sydow

Image of intersection cont.
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Image of di�erence

Assume that f : X → Y .

For any sets A,A′ ⊆ X the following holds:

f (A \ A′) ⊆ f (A) \ f (A′)

(the equality does not hold in general: example?)
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Inverse image of union

Assume that f : X → Y .

For any two sets B,B ′ ⊆ Y the following holds:

f −1(B ∪ B ′) = f −1(B) ∪ f −1(B ′)

(notice: we do not assume that f is an injection)
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Inverse image of intersection

Assume that f : X → Y .

For any two sets B,B ′ ⊆ Y the following holds:
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Inverse image of di�erence

Assume that f : X → Y .

For any two sets B,B ′ ⊆ Y the following holds:

f −1(B \ B ′) = f −1(B) \ f −1(B ′)

(notice: we do not assume that f is an injection)
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Composition of image and inverse image

Assume that f : X → Y .

For any A ⊆ X the following holds:

A ⊆ f −1(f (A))

For what conditions the equality holds? (for f being an

injection)

i.e. if f is an injection then A = f −1(f (A)).
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Composition of image and inverse image, cont.

For any B ⊆ f (X ) the following holds:

f (f −1(B)) = B

Why the assumption B ⊆ f (X ) above is important? (give an

example)
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Composition of image and inverse image, cont.

For any B ⊆ f (X ) the following holds:

f (f −1(B)) = B

Why the assumption B ⊆ f (X ) above is important? (give an

example)
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Thank you for your attention.


