Discrete Mathematics

(c) Marcin Sydow

Discrete Mathematics Functions

(c) Marcin Sydow

Contents

Discrete Mathematics

(c) Marcin Svdow

- Function
- Injection, surjection and bijection
- Inverse and composition
- Image and inverse image

Definition of a function

Discrete Mathematics

> (c) Marcir Sydow

> > Definition: A relation $f \subseteq X \times Y$ is called a **function** if and only if for each element of $x \in X$ there exists *exactly one* $y \in Y$ so that $(x, y) \in f$.

Function is denoted as follows:

$$f: X \to Y$$

X is called the **domain** of f and Y is called **co-domain** of f.

Elements of X (domain) are called *arguments* and elements of Y (co-domain) are called *values* of the function.

Since there is exactly one value ofor each argument, it is possible to write:

$$f(x) = y$$

for particular $x \in X$ and $y \in Y$.

Function is also called *mapping* of X into Y.

Set of all functions

Discrete Mathematics

> (c) Marcir Svdow

> > Set of all possible functions that have domain X and co-domain Y is denoted as:

 Y^X

Discrete Mathematics

(c) Marcin Sydow Definition (in natural language): A relation $f \subseteq X \times Y$ is called a **function** if and only if for each element of $x \in X$ there exists exactly one $y \in Y$ so that $(x, y) \in f$.

Let's translate this to mathematical symbols:

Discrete Mathematics

(c) Marcin Sydow Definition (in natural language): A relation $f \subseteq X \times Y$ is called a **function** if and only if for each element of $x \in X$ there exists exactly one $y \in Y$ so that $(x, y) \in f$.

Let's translate this to mathematical symbols:

"for each element of $x \in X$ there exists $y \in Y$ so that $(x, y) \in f$ ":

Discrete Mathematics

(c) Marcin Sydow Definition (in natural language): A relation $f \subseteq X \times Y$ is called a **function** if and only if for each element of $x \in X$ there exists exactly one $y \in Y$ so that $(x, y) \in f$.

Let's translate this to mathematical symbols:

"for each element of $x \in X$ there exists $y \in Y$ so that $(x, y) \in f$ ":

$$\forall_{x \in X} [\exists_{y \in Y} (x, y) \in f]$$

Discrete Mathematics

Definition (in natural language): A relation $f \subseteq X \times Y$ is called a **function** if and only if for each element of $x \in X$ there exists exactly one $y \in Y$ so that $(x, y) \in f$.

Let's translate this to mathematical symbols:

"for each element of $x \in X$ there exists $y \in Y$ so that $(x, y) \in f$ ":

$$\forall_{x \in X} [\exists_{y \in Y} (x, y) \in f]$$

But how to express that there exists exactly one such y (not more)?:

Discrete Mathematics

Definition (in natural language): A relation $f \subseteq X \times Y$ is called a **function** if and only if for each element of $x \in X$ there exists exactly one $y \in Y$ so that $(x, y) \in f$.

Let's translate this to mathematical symbols:

"for each element of $x \in X$ there exists $y \in Y$ so that $(x, y) \in f$ ":

$$\forall_{x \in X} [\exists_{y \in Y} (x, y) \in f]$$

But how to express that there exists exactly one such y (not more)?:

$$\wedge [\forall_{y,y'\in Y}((x,y)\in f \wedge (x,y')\in f) \Rightarrow y=y']$$

Discrete Mathematics

Definition (in natural language): A relation $f \subseteq X \times Y$ is called a **function** if and only if for each element of $x \in X$ there exists exactly one $y \in Y$ so that $(x, y) \in f$.

Let's translate this to mathematical symbols:

"for each element of $x \in X$ there exists $y \in Y$ so that $(x, y) \in f$ ":

$$\forall_{x \in X} [\exists_{y \in Y} (x, y) \in f]$$

But how to express that there exists exactly one such y (not more)?:

$$\wedge [\forall_{y,y'\in Y}((x,y)\in f \wedge (x,y')\in f) \Rightarrow y=y']$$

The resulting expression:

$$\forall_{x \in X} [\exists_{y \in Y} (x, y) \in f] \land [\forall_{y, y' \in Y} ((x, y) \in f \land (x, y') \in f) \Rightarrow y = y']$$

Discrete Mathematics

(c) Marcin Sydow

$$X = \{x \in \mathbb{N} : x < 5\}$$

Is the following a function?

Discrete Mathematics

(c) Marcin Sydow

$$X = \{x \in \mathbb{N} : x < 5\}$$

Is the following a function?
 $\{(0,1), (1,2), (2,3), (3,4)\}$

Discrete Mathematics

(c) Marcin Sydow

```
 X = \{x \in N : x < 5\}  Is the following a function?  \{(0,1), (1,2), (2,3), (3,4)\}   \{(0,1), (1,2), (2,3), (3,4), (4,0)\}
```

Discrete Mathematics

> (c) Marcir Sydow

```
 \begin{split} X &= \{x \in \mathbb{N} : x < 5\} \\ \text{Is the following a function?} \\ \{(0,1),(1,2),(2,3),(3,4)\} \\ \{(0,1),(1,2),(2,3),(3,4),(4,0)\} \\ \{(0,1),(1,2),(2,3),(3,4),(4,0),(0,2)\} \end{split}
```

Equality of functions

Discrete Mathematics

> (c) Marcin Svdow

> > Two functions $f: X \to Y$ and $g: A \to B$ are **equal** iff the following conditions hold:

- X = A (equality of domains), Y = B (equality of co-domains)

Restriction and extension of a function

Discrete Mathematics

> (c) Marcin Sydow

> > Let $f: X \to Y$ and $f': X' \to Y$ and $X \subseteq X'$

If f(x)=f'(x) for all $x \in X$ we say that f' is an extension of f and f is a restriction of f'

Graph of a function

Discrete Mathematics

> (c) Marcir Sydow

> > Given a function $f: X \to Y$ if the set of pairs $f = \{(x,y) \in X \times Y : y = f(x)\}$ can be naturally mapped to points in the plane with Cartesian coordinates (e.g. when X=Y=R), we can view the f as its **graph**.

Injection

Discrete Mathematics

(c) Marcir Sydow

A function $f: X \to Y$ is **injection** iff the following holds:

$$\forall_{x,x'\in X} \ x\neq x' \Rightarrow f(x)\neq f(x')$$

An injection is also called a "one-to-one" function.

Discrete Mathematics

(c) Marcin Sydow

Is the following an injection?

Discrete Mathematics

(c) Marcin Sydow

Is the following an injection?

$$f: Z \to Z, f(x) = x^2$$

Discrete Mathematics

(c) Marcin Sydow

Is the following an injection?

$$f: Z \to Z$$
, $f(x) = x^2$

$$f: N \to N, f(x) = x^2$$

Surjection

Discrete Mathematics

(c) Marcir Sydow

A function $f: X \to Y$ is **surjection** iff the following holds:

$$\forall_{y\in Y}\exists_{x\in X}\,y=f(x)$$

A surjection is also called "onto mapping" (or "f maps $X\ onto\ Y$ ")

Discrete Mathematics

(c) Marcin Sydow

Is the following a surjection?

Discrete Mathematics

> (c) Marcin Sydow

> > Is the following a surjection? $f: R \to Z \ f(x) = floor(x)$

Discrete Mathematics

(c) Marcin Sydow

> Is the following a surjection? $f: R \to Z \ f(x) = floor(x)$ $f: R \to R, \ f(x) = 1/(1 + e^{-x})$

Discrete Mathematics

(c) Marcin Sydow

> Is the following a surjection? $f: R \rightarrow Z \ f(x) = floor(x)$ $f: R \rightarrow R, \ f(x) = 1/(1 + e^{-x})$ $f: R \rightarrow [0, 1], \ f(x) = 1/(1 + e^{-x})$

Discrete Mathematics

(c) Marcir Sydow

Is the following a surjection? $f: R \to Z \ f(x) = floor(x)$ $f: R \to R, \ f(x) = 1/(1+e^{-x})$ $f: R \to [0,1], \ f(x) = 1/(1+e^{-x})$ $f: R \to (0,1), \ f(x) = 1/(1+e^{-x})$

Bijection

Discrete Mathematics

(c) Marcin Sydow

A function $f: X \to Y$ is **bijection** iff it is injection and surjection.

Discrete Mathematics

(c) Marcin Sydow

Is the following a bijection?

Discrete Mathematics

(c) Marcin Sydow

Is the following a bijection? $f: R \to Z \ f(x) = floor(x)$

Discrete Mathematics

(c) Marcin Sydow

Is the following a bijection? $f: R \rightarrow Z \ f(x) = floor(x)$ $f: R \rightarrow R, \ f(x) = 1/(1 + e^{-x})$

Discrete Mathematics

(c) Marcin Sydow

Is the following a bijection? $f: R \rightarrow Z \ f(x) = floor(x)$ $f: R \rightarrow R, \ f(x) = 1/(1 + e^{-x})$ $f: R \rightarrow [0, 1], \ f(x) = 1/(1 + e^{-x})$

Discrete Mathematics

(c) Marcir Sydow

Is the following a bijection? $f: R \to Z \ f(x) = floor(x)$ $f: R \to R, \ f(x) = 1/(1 + e^{-x})$ $f: R \to [0, 1], \ f(x) = 1/(1 + e^{-x})$ $f: R \to (0, 1), \ f(x) = 1/(1 + e^{-x})$

Inverse of a function

Discrete Mathematics

(c) Marcir Sydow

If $f:X\to Y$ is an injection, then the **inverse** of this function is the (unique) function $f^{-1}:Y\to X$ defined as follows:

$$f^{-1}(y) = x \Leftrightarrow f(x) = y$$

questions:

Inverse of a function

Discrete Mathematics

(c) Marcir Sydow

If $f: X \to Y$ is an injection, then the **inverse** of this function is the (unique) function $f^{-1}: Y \to X$ defined as follows:

$$f^{-1}(y) = x \Leftrightarrow f(x) = y$$

questions:

is inverse of injection an injection?

Inverse of a function

Discrete Mathematics

(c) Marcir Sydow

If $f: X \to Y$ is an injection, then the **inverse** of this function is the (unique) function $f^{-1}: Y \to X$ defined as follows:

$$f^{-1}(y) = x \Leftrightarrow f(x) = y$$

questions:

is inverse of injection an injection? (yes)

Inverse of a function

Discrete Mathematics

(c) Marcir Sydow

If $f: X \to Y$ is an injection, then the **inverse** of this function is the (unique) function $f^{-1}: Y \to X$ defined as follows:

$$f^{-1}(y) = x \Leftrightarrow f(x) = y$$

questions:

is inverse of injection an injection? (yes) is inverse of bijection a bijection?

Inverse of a function

Discrete Mathematics

> (c) Marcir Sydow

> > If $f: X \to Y$ is an injection, then the **inverse** of this function is the (unique) function $f^{-1}: Y \to X$ defined as follows:

$$f^{-1}(y) = x \Leftrightarrow f(x) = y$$

questions:

is inverse of injection an injection? (yes) is inverse of bijection a bijection? (yes)

Example of inverse

Discrete Mathematics

(c) Marcin Sydow

$$f: R \rightarrow (0,1), \ f(x) = 1/(1+e^{-x})$$

 $f(x) = x^2$ for non-negative reals
 $f(x) = 2^x$, for non-negative reals

Discrete Mathematics

(c) Marcir Sydow

For two functions $f: X \to Y$ and $g: Y \to Z$ their **composition** is the function $g \circ f: X \to Z$ defined as follows for any $x \in X$:

$$(g \circ f)(x) = g(f(x))$$

(Notice the order of the functions in the denotation $g \circ f$)

Discrete Mathematics

> (c) Marcir Sydow

For two functions $f: X \to Y$ and $g: Y \to Z$ their **composition** is the function $g \circ f: X \to Z$ defined as follows for any $x \in X$:

$$(g \circ f)(x) = g(f(x))$$

(Notice the order of the functions in the denotation $g \circ f$) is composition commutative? (i.e. is $g \circ f = f \circ g$?)

Discrete Mathematics

> (c) Marcir Sydow

For two functions $f: X \to Y$ and $g: Y \to Z$ their **composition** is the function $g \circ f: X \to Z$ defined as follows for any $x \in X$:

$$(g\circ f)(x)=g(f(x))$$

(Notice the order of the functions in the denotation $g \circ f$) is composition commutative? (i.e. is $g \circ f = f \circ g$?)(no)

Discrete Mathematics

> (c) Marcir Sydow

For two functions $f: X \to Y$ and $g: Y \to Z$ their **composition** is the function $g \circ f: X \to Z$ defined as follows for any $x \in X$:

$$(g\circ f)(x)=g(f(x))$$

(Notice the order of the functions in the denotation $g \circ f$) is composition commutative? (i.e. is $g \circ f = f \circ g$?)(no) is compostion associative? (i.e. is $h \circ (g \circ f) = (h \circ g) \circ f$?)

Discrete Mathematics

> (c) Marcir Sydow

For two functions $f: X \to Y$ and $g: Y \to Z$ their **composition** is the function $g \circ f: X \to Z$ defined as follows for any $x \in X$:

$$(g\circ f)(x)=g(f(x))$$

(Notice the order of the functions in the denotation $g \circ f$) is composition commutative? (i.e. is $g \circ f = f \circ g$?)(no) is compostion associative? (i.e. is $h \circ (g \circ f) = (h \circ g) \circ f$?)(yes)

Discrete Mathematics

> (c) Marcir Sydow

For two functions $f: X \to Y$ and $g: Y \to Z$ their **composition** is the function $g \circ f: X \to Z$ defined as follows for any $x \in X$:

$$(g \circ f)(x) = g(f(x))$$

(Notice the order of the functions in the denotation $g \circ f$) is composition commutative? (i.e. is $g \circ f = f \circ g$?)(no) is compostion associative? (i.e. is $h \circ (g \circ f) = (h \circ g) \circ f$?)(yes)

Notice: non-commutativitiy and associativity of compositon

Definition of (infinite) sequence

Discrete Mathematics

> (c) Marcir Sydow

> > A sequence $a_0, a_1, a_2, a_3, \ldots$ is a function whose domain is the set of natural numbers \mathcal{N} $a: \mathcal{N} \to X$, where X is some set. For any number $i \in \mathcal{N}$ a(i) is usually denoted as a_i . In particular, if X is a number set, the sequence is *numeric* (e.g. for $X = \mathcal{R}$ it is a real sequence.

Image of a set

Discrete Mathematics

(c) Marcir Sydow

For a function $f: X \to Y$ and a set $A \subseteq X$ the **image** of A is the set $f(A) \subseteq Y$ defined as follows:

$$f(A) = \{ y \in Y : \exists_{x \in A} y = f(x) \}$$

(to avoid misunderstanding of the denotation f(A) we assume that $A \notin X$)

Inverse image of a set

Discrete Mathematics

(c) Marcir Sydow

For a function $f: X \to Y$ and a set $B \subseteq Y$ the **inverse image** of B is the set $f^{-1}(B) \subseteq X$ defined as follows:

$$f^{-1}(B) = \{ x \in X : f(x) \in B \}$$

(to avoid misunderstanding of the denotation $f^{-1}(B)$ we assume that $B \notin Y$)

Image of union

Discrete Mathematics

(c) Marcir Sydow

> Assume that $f: X \to Y$. For any sets $A, A' \subseteq X$ the following holds:

$$f(A \cup A') = f(A) \cup f(A')$$

Image of intersection

Discrete Mathematics

(c) Marcin Sydow

> Assume that $f: X \to Y$. For any sets $A, A' \subseteq X$ the following holds:

$$f(A \cap A') \subseteq f(A) \cap f(A')$$

(the equality does not hold in general: example?)

Example

Discrete Mathematics

(c) Marcin Sydow

 $f:Z\to N,\ f(x)=x^2$ A is the set of negative integers, A' is the set of positive integers. What is $A\cap A'$? What is $f(A\cap A')$? What is f(A)? What is f(A)? What is f(A)?

Image of intersection cont.

Discrete Mathematics

(c) Marcir Sydow

What property of the function f would suffice for the equality:

$$f(A \cap A') = f(A) \cap f(A')$$

?

Image of intersection cont.

Discrete Mathematics

> (c) Marcir Sydow

> > What property of the function f would suffice for the equality:

$$f(A \cap A') = f(A) \cap f(A')$$

?

The above equality holds if the function f is an injection.

Image of difference

Discrete Mathematics

(c) Marcir Sydow

> Assume that $f: X \to Y$. For any sets $A, A' \subseteq X$ the following holds:

$$f(A \setminus A') \subseteq f(A) \setminus f(A')$$

(the equality does not hold in general: example?)

Inverse image of union

Discrete Mathematics

> (c) Marcir Sydow

> > Assume that $f: X \to Y$. For any two sets $B, B' \subseteq Y$ the following holds:

$$f^{-1}(B \cup B') = f^{-1}(B) \cup f^{-1}(B')$$

(notice: we do not assume that f is an injection)

Inverse image of intersection

Discrete Mathematics

(c) Marcir Sydow

> Assume that $f: X \to Y$. For any two sets $B, B' \subseteq Y$ the following holds:

$$f^{-1}(B \cap B') = f^{-1}(B) \cap f^{-1}(B')$$

(notice: we do not assume that f is an injection)

Inverse image of difference

Discrete Mathematics

(c) Marcir Sydow

> Assume that $f: X \to Y$. For any two sets $B, B' \subseteq Y$ the following holds:

$$f^{-1}(B\setminus B')=f^{-1}(B)\setminus f^{-1}(B')$$

(notice: we do not assume that f is an injection)

Composition of image and inverse image

Discrete Mathematics

(c) Marcin Sydow

> Assume that $f: X \to Y$. For any $A \subseteq X$ the following holds:

$$A\subseteq f^{-1}(f(A))$$

Composition of image and inverse image

Discrete Mathematics

(c) Marcin Sydow

Assume that $f: X \to Y$.

For any $A \subseteq X$ the following holds:

$$A \subseteq f^{-1}(f(A))$$

For what conditions the equality holds?

Composition of image and inverse image

Discrete Mathematics

(c) Marcin Sydow

Assume that $f: X \to Y$.

For any $A \subseteq X$ the following holds:

$$A \subseteq f^{-1}(f(A))$$

For what conditions the equality holds? (for f being an injection)

i.e. if f is an injection then $A = f^{-1}(f(A))$.

Composition of image and inverse image, cont.

Discrete Mathematics

(c) Marcir Sydow

For any $B \subseteq f(X)$ the following holds:

$$f(f^{-1}(B)) = B$$

Composition of image and inverse image, cont.

Discrete Mathematics

(c) Marcir Sydow

For any $B \subseteq f(X)$ the following holds:

$$f(f^{-1}(B)) = B$$

Why the assumption $B \subseteq f(X)$ above is important? (give an example)

Discrete Mathematics

(c) Marcin Sydow

Thank you for your attention.