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Introduction

The role of graphs:
extremely important in computer science and mathematics
numerous important applications
modeling the concept of binary relation

Graphs are extensively and intuitively to convey information in
visual form.
Here we introduce basic mathematical view on graphs.
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Graph (the mathematical definition)

Graph (undirected graph) is an ordered pair of sets:
G = (V ,E ), where:

V is the vertex1 set
E is the edge set
each edge e = {v ,w} in E is an unordered pair of
vertices from V , called the ends of the edge e.

Vertex can be also called node.

1plural form: vertices
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Edges and vertices

For an edge e = {v ,w} ∈ E we say:
the edge e connects the vertices v i w
the vertices v and w are neighbours or are adjacent in the
graph G
the edge e is incident to the vertex v (or w).
a self-loop is an edge of the form (v , v).

If V and E are empty G is the zero graph, if E is empty it is an
empty graph
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Directed graph (digraph) (mathematical definition)

Directed graph (digraph) is an ordered pair: G = (V ,E ),
where:

V is the vertex set
E is the edge set (or arc set)
each edge e = (v ,w) in E is an ordered pair of vertices
from V , called the tail and head end of the edge e,
respectively.

Example
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Simple graphs, multigraphs and hypergraphs

Simple graph: a graph where there are no self-loops (edges or
arcs of the form (v , v)).

If there are possible multiple edges or arcs between the same
pair of vertices we call it a multi-graph.

Notice: in a directed graph (v ,w) is a different arc than (w , v)
for v 6= w .
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Picture of a graph

A given graph can be depicted on a plane (or other
2-dimensional surface) in multiple ways (example).

A picture is only a visual form of representation of a graph.

It is necessary to distinguish between an abstract
(mathematical) concept of a graph and its picture (visual
representation)
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Degree of a vertex

Degree of a vertex v denoted as deg(v) is the number of edges
(or arcs) incident with this vertex.

(note: we assume that each self-loop (v , v) contributes 2 to the
degree of the vertex v)

If deg(v) = 0 we call it an isolated vertex.

Example
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Degree sum theorem (hand-shake theorem)

The sum of degrees of all vertices in any graph is always even.

(why?)

Proof: each edge contributes 2 to the sum of degrees.

Corollary: sum of degrees is twice the number of edges

Corollary: the number of vertices with odd degree must be
even.

Example
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Degree sum theorem (hand-shake theorem)

The sum of degrees of all vertices in any graph is always even.

(why?)

Proof: each edge contributes 2 to the sum of degrees.

Corollary: sum of degrees is twice the number of edges

Corollary: the number of vertices with odd degree must be
even.

Example
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Degrees in directed graphs

In directed graphs: indegree of a vertex v (indeg(v)): number
of arcs that v is the head of

outdegree of a vertex v (outdeg(v)): number of arcs that v is
the tail of

Example
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Degree sum theorem for digraphs

The sum of indegrees of all vertices is equal to the sum of
outdegrees of all vertices in any directed graph.

Proof: each arc contributes 1 to the indegree sum and 1 to the
outdegree sum.

Corollary: sum of indegrees (outdegrees) is equal to the number
of arcs in a digraph.
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Graph Isomorphism

Two graphs G1(V1,E1), G2(V2,E2) are isomorphic ⇔
there exists a bijection f : V1 → V2 so that:

v ,w are connected by an edge (arc) in G1 ⇔
f (v), f (w) are connected by an edge (arc) in G2.

The function f is called isomorphism between graphs G1 and
G2.

Example

Interpretation: graphs are isomorphic if they are “the same”
from the point of view of the graph theory (they can have
different names of vertices or be differently depicted, etc.).
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Subgraph and induced graph

Subgraph of graph G = (V ,E ) is a graph H = (V ′,E ′) so that
V ′ ⊆ V and E ′ ⊆ E and any edge from E ′ has both its ends in
V ′.

Example

A subgraph of G induced by a set of vertices V ′ ⊆ V is a
subgraph G ′ of G whose vertex set is V ′ whose edges (arcs) are
all edges (arcs) of G that have both ends in V ′.

Example
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Some important graph families

(all graphs below are simple graphs)

empty graph Nn (n vertices, no edges) (example)
full graph Kn (a simple graph of n vertices and all possible
edges (arcs)) (example)
bi-partite graph (its set of vertices can be divided into two
disjoint sets so that any edges (arcs) are only between the
sets) (example)
full bi-partite graph Km,n (a bipartite graph that has all
possible edges (arcs))
path graph Pn (example)
cyclic graph Cn (example)
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Adjacency Matrix

For a graph G = (V ,E ), having n vertices its adjacency
matrix is a square matrix A having n rows and columns indexed
by the vertices so that A[i , j ] = 1 ⇔ vertices i , j are adjacent,
else A[i , j ] = 0.
(in case of self-loop (i , i), A[i , i ] = 2)

Example
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Some Simple Observations

Some simple relations concerning properties of a graph and
properties of its adjacency matrix:

for undirected graphs the matrix is symmetric (AT = A)
for simple graphs the diagonal of A contains only zeros
sum of numbers in a row i : degree of i (outdegree for
digraphs)
sum of numbers in a column i : degree of i (indegree for
digraphs)
for directed graphs AT reflects the graph with all the arcs
“inversed”

Examples
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Incidence matrix

An incidence matrix I of an undirected graph G : the rows
correspond to vertices and columns correspond to edges (arcs).
I [v , e] = 1 ⇔ v is incident with e (else I[v,e]=0)

Example

For directed graphs: the only difference is the distinction
between v being the head (=1) or the tail (=-1) of e

Example
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Graphs vs relations

Each directed graph naturally represents any binary relation
R ∈ V × V . (i.e. E is the set of all pairs of elements from V
that are in the relation)

Example

Each undirected graph naturally represents any symmetric
binary relation

Example
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Observations on analogies between relations and
graphs

reflexive relation:

self-loop on each vertex
symmetric relation: undirected graph or always mutual arcs
transitive relation: for any path there is a “short” arc
anti-symmetric relation: no mutual arcs, always self-loops
inverse of the relation: each arc is inversed
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inverse of the relation: each arc is inversed
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reflexive relation: self-loop on each vertex
symmetric relation: undirected graph or always mutual arcs
transitive relation: for any path there is a “short” arc
anti-symmetric relation:

no mutual arcs, always self-loops
inverse of the relation: each arc is inversed
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graphs
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Path

Path: an alternating sequence of vertices and edges
(v0, e0, v1, eq, . . . , vk , ek , . . . , vl ) so that each edge ek is incident
with vertices vk , vk+1. We call it a path from v0 to vl .

(sometimes it is convenient to define path just as a subsequence
of vertices or edges of the above sequence)

Example

Directed path in a directed graph is defined analogously (the
arcs must be directed from vk to vk+1
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Paths cont.

simple path: no repeated edges (arcs)

elementary path: no repeated vertices

Examples

length of a path: number of its edges (arcs)

(assume: 0-length path is a single vertex)

Example
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Distance in graph

Distance between two vertices is the length of a shortest
path between them.

The distance function in graphs d : V × V → N has the
following properties:

d(u, v) = 0⇔ u == v
(only in undirected graphs) it is a symmetric function, i.e.
∀u, v ∈ V d(u,v) = d(v,u)
triangle inequality: ∀u, v ,w ∈ V it holds that
d(u, v) + d(v ,w) ≥ d(u,w)
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Cycle

cycle: a path of length at least 3 (2 for directed graphs) where
the beginning vertex equals the ending vertex v0 == vl (also
called a closed path)

Example

analogously: directed cycle, simple cycle, elementary cycle
(except the starting and ending vertices there are no repeats)

Examples
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Connectedness

A graph is connected ⇔ for any two its vertices v,w there
exists a path from v to w

Example
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Connected component of a graph

Connected component of a graph is its maximal subgraph
that is connected.

Example (why “maximal”)?
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Strongly connected graph

(only for directed graphs)

A directed graph is stronlgy connected ⇔ for any pair of its
vertices v,w there exists a directed path from v to w.

Example

A directed graph is weakly connected ⇔ for any pair of its
vertices v,w there exists undirected path from v,w (i.e. the
directions of arcs can be ignored)

note: strong connectedness implies weak connectedness (but
not the opposite)

Example
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Strongly and weakly connected components

Strongly connected component: a maximal subgraph that is
strongly connected

Weakly connected component: a maximal subgraph that is
weakly connected

Examples
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Drzewa

Tree is a graph that is connected and does not contain cycles
(acyclic).

Example

Forest is a graph that does not contain cycles (but does not
have to be connected)

Example

A leaf of a tree is a vertex that has degree 1.

Other vertices (nodes) are called internal nodes of a tree.

Example



Discrete
Mathematics

(c) Marcin
Sydow

Graph

Vertex
Degree

Isomorphism

Graph
Matrices

Graph as
Relation

Paths and
Cycles

Connectedness

Trees

Equivalent definitions of a tree

The following conditions are equivalent:

T is a tree of n vertices
T has exactly n-1 edges (arcs) and is acyclic
T is connected and has exactly n-1 edges (arcs)
T is connected and removing any edge (arc) makes it not
connected
any two vertices in T are connected by exactly one
elementary path
T is acyclic and adding any edge makes exactly one cycle



Discrete
Mathematics

(c) Marcin
Sydow

Graph

Vertex
Degree

Isomorphism

Graph
Matrices

Graph as
Relation

Paths and
Cycles

Connectedness

Trees

Equivalent definitions of a tree

The following conditions are equivalent:

T is a tree of n vertices

T has exactly n-1 edges (arcs) and is acyclic
T is connected and has exactly n-1 edges (arcs)
T is connected and removing any edge (arc) makes it not
connected
any two vertices in T are connected by exactly one
elementary path
T is acyclic and adding any edge makes exactly one cycle



Discrete
Mathematics

(c) Marcin
Sydow

Graph

Vertex
Degree

Isomorphism

Graph
Matrices

Graph as
Relation

Paths and
Cycles

Connectedness

Trees

Equivalent definitions of a tree

The following conditions are equivalent:

T is a tree of n vertices
T has exactly n-1 edges (arcs) and is acyclic

T is connected and has exactly n-1 edges (arcs)
T is connected and removing any edge (arc) makes it not
connected
any two vertices in T are connected by exactly one
elementary path
T is acyclic and adding any edge makes exactly one cycle



Discrete
Mathematics

(c) Marcin
Sydow

Graph

Vertex
Degree

Isomorphism

Graph
Matrices

Graph as
Relation

Paths and
Cycles

Connectedness

Trees

Equivalent definitions of a tree

The following conditions are equivalent:

T is a tree of n vertices
T has exactly n-1 edges (arcs) and is acyclic
T is connected and has exactly n-1 edges (arcs)

T is connected and removing any edge (arc) makes it not
connected
any two vertices in T are connected by exactly one
elementary path
T is acyclic and adding any edge makes exactly one cycle



Discrete
Mathematics

(c) Marcin
Sydow

Graph

Vertex
Degree

Isomorphism

Graph
Matrices

Graph as
Relation

Paths and
Cycles

Connectedness

Trees

Equivalent definitions of a tree

The following conditions are equivalent:

T is a tree of n vertices
T has exactly n-1 edges (arcs) and is acyclic
T is connected and has exactly n-1 edges (arcs)
T is connected and removing any edge (arc) makes it not
connected

any two vertices in T are connected by exactly one
elementary path
T is acyclic and adding any edge makes exactly one cycle



Discrete
Mathematics

(c) Marcin
Sydow

Graph

Vertex
Degree

Isomorphism

Graph
Matrices

Graph as
Relation

Paths and
Cycles

Connectedness

Trees

Equivalent definitions of a tree

The following conditions are equivalent:

T is a tree of n vertices
T has exactly n-1 edges (arcs) and is acyclic
T is connected and has exactly n-1 edges (arcs)
T is connected and removing any edge (arc) makes it not
connected
any two vertices in T are connected by exactly one
elementary path

T is acyclic and adding any edge makes exactly one cycle
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Rooted tree

A rooted tree is a tree with exactly one distinguished node
called its root.

Example

Distinguishing the root introduces a natural hierarchy among
the nodes of the tree: the lower the depth the higher the node
in the hierarchy.

Picture of a rooted tree: root is at the top, all nodes of the
same depth are on the same level, the higher the depth, the
lower the level on the picture.

Example
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Terminology of rooted trees

A depth of a vertex v of a rooted tree, denoted as depth(v) is
its distance from the root.

Height of a rooted tree: maximum depth of any its node

ancestor of a vertex v is any vertex w that lies on any path
from the root to v , v is then called a descendant of w (the
root does not have ancestors and the leaves do not have
descendants)

a ancestor w of a neighbour (adjacent) vertex v is called the
parent of v , in this case v is called the child of w .

if vertices u, v have a common parent we call them siblings

Examples



Discrete
Mathematics

(c) Marcin
Sydow

Graph

Vertex
Degree

Isomorphism

Graph
Matrices

Graph as
Relation

Paths and
Cycles

Connectedness

Trees

Binary tree

Binary tree is a rooted tree with the following properties:

each node has maximally 2 children
for each child it is specified whether it is left or right child
of its parent (max. 1 left child and 1 right child)

Example
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Summary

Mathematical definition of Graph and Digraph
Degree of a vertex
Graph isomorphism
Adjacency and Incidence Matrices
Graphs vs Relations
Path and Cycle
Connectedness
Weakly and strongly connected components
Tree, Rooted tree, Binary tree
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Example tasks/questions/problems

give the mathematical definitions and basic properties of the
discussed concepts and their basic properties (in particular:
graph, digraph, degree, isomorphism, adjacency/incidence
matrix, path and cycle, connectedness and connected
components, trees (including rooted and binary trees)

make picture of the specified graph of one of the discussed
families (full, bi-partite, etc.)

given a picture of a graph provide its mathematical form (pair
of sets) and adjacency/incidence matrix and vice versa

check whether the given graphs are isomorphic and prove your
answer

find connected components of a given graph (or weakly/strongly
connected components for a digraph)

specify the height, depth, number of leaves, etc. of a given
rooted tree
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Thank you for your attention.
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