Discrete Mathematics

(c) Marcir Sydow

ropertie:

Equivalence

Order relation

N-ary relations

Discrete Mathematics Relations

(c) Marcin Sydow

Contents

Discrete Mathematics

(c) Marciı Sydow

ropertie

Equivalence relation

Order relation

N-ary relation:

- binary relation
- domain, codomain, image, preimage
- inverse and composition
- properties of relations
- closure of relation
- equivalence relation
- order relation

Binary relation

Discrete Mathematics

(c) Marcii Sydow

Propertie

Equivalence relation

Order relation

N-ary relations Let A, B be two sets. A **binary relation** between the elements of A and B is any subset of the Cartesian product of A and B, i.e. $R \subseteq A \times B$.

We denote relations by capital letters, e.g. R, S, etc.

We say that two elements $a \in A$ and $b \in B$ are in relation R iff the pair $(a, b) \in R$ (it can be also denoted as: aRb).

Discrete Mathematics

- empty relation (no pair belongs to it)
- **diagonal** relation $\Delta = \{(x, x) : x \in X\}$ (it is the "equality" relation)
- full relation: any pair belongs to it (i.e. $R = X^2$)

Binary relation as a predicate and as a graph

Discrete Mathematics

(c) Marci Sydow

Properties

Equivalence relation

Order relation

N-ary relation Binary relation can be represented as a predicate with 2 free variables as follows:

Given a predicate R(x,y), for $x \in X$ and $y \in Y$, the relation is the set of all pairs $(x,y) \in X \times Y$ that satisfy the predicate (i.e. make it true)

Each binary relation can be naturally represented as a graph.

Discrete Mathematics

(c) Marci Sydow

ropertie

Equivalence relation

Order relation

N-ary relations R(x, y): "x is less than y"

The relation R represented by the above predicate is the set of all pairs $(x, y) \in X \times Y$ so that R(x, y) is true (i.e. x < y)

Examples of binary relations

Discrete Mathematics

(c) Marcii Sydow

Equivalence

Order relation

N-ary

$$A = B = \mathcal{N}$$

- diagonal relation Δ (x = y)
- x > y
- $x \le y$
- x is a divisor of y
- x and y have common divisor
- $x^2 + y^2 \ge 10$

More examples

Discrete Mathematics

- (c) Marci Sydow
- Fauivalence
- relation relation
- Order relation
- N-ary relation

Examples of relations on the set $P \times P$, where P is the set of all people.

- $(x,y) \in R \Leftrightarrow x \text{ is a son of y}$
- $(x,y) \in R \Leftrightarrow x$ is the mother of y
- $(x,y) \in R \Leftrightarrow x$ is the father of y
- $(x,y) \in R \Leftrightarrow x$ is a grandmother of y

More examples

Discrete Mathematics

(c) Marci Sydow

Equivalan

relation relation

Order relation

N-ary

Examples of $R \subseteq P \times C$, where C is the set of all courses in the univeristy for last 5 years.

- **■** $(p, c) \in R \Leftrightarrow p$ passed course c
- $(p,c) \in R \Leftrightarrow p$ attended course c
- $(p, c) \in R \Leftrightarrow p$ thinks course c is interesting

Domain and co-domain of relation

Discrete Mathematics

(c) Marci Sydow

'roperties

Equivalence relation

Order relation

N-ary

For binary relation $R \subseteq A \times B$, the set A is called its **domain** and B is called its **co-domain**

Domain and co-domain can be the same set.

Image and pre-image of relation

Discrete Mathematics

(c) Marci Sydow

Propertie

Equivalence relation

Order relation

N-ary relations **Pre-image** of binary relation $R \subseteq X \times Y$:

$$\{x\in X:\exists y\in Y(x,y)\in R\}$$

Image of binary relation $R \subseteq X \times Y$:

$$\{y \in Y : \exists x \in X(x,y) \in R\}$$

Discrete Mathematics

(c) Marcir Sydow

Propertie

Equivalence

Order relation

N-ary

$$xRy \Leftrightarrow x > y$$

 $R = ?$

Discrete Mathematics

(c) Marcii Sydow

Propertie

Equivalence

Order relation

N-ary relations

$$xRy \Leftrightarrow x > y$$

 $R = \{(5,3), (5,4), (6,3), (6,4), (6,5)\}$
domain of R?:

Discrete Mathematics

(c) Marcii Sydow

Propertie

Equivalence

Order relation

N-ary

$$xRy \Leftrightarrow x > y$$

 $R = \{(5,3), (5,4), (6,3), (6,4), (6,5)\}$
domain of R?: A
co-domain of R?:

Discrete Mathematics

(c) Marcii Sydow

Propertie

Equivalence

Order relation

N-ary

$$xRy \Leftrightarrow x > y$$

 $R = ? \{(5,3), (5,4), (6,3), (6,4), (6,5)\}$
domain of R?: A
co-domain of R?: B
pre-image of R?:

Discrete Mathematics

(c) Marcii Sydow

Propertie

Equivalence relation

Order relation

N-arv

$$xRy \Leftrightarrow x > y$$

 $R = ? \{(5,3), (5,4), (6,3), (6,4), (6,5)\}$
domain of R?: A
co-domain of R?: B
pre-image of R?: $\{5,6\}$
image of R?:

Discrete Mathematics

(c) Marcii Sydow

Propertie

Equivalence relation

Order relation

N-ary

$$xRy \Leftrightarrow x > y$$

 $R = ? \{(5,3), (5,4), (6,3), (6,4), (6,5)\}$
domain of R?: A
co-domain of R?: B
pre-image of R?: $\{5,6\}$
image of R?: $\{3,4,5\}$

Inverse of relation

Discrete Mathematics

(c) Marci Sydow

Propertie

Equivalence

Order relation

N-ary relations If $R \subseteq X \times Y$ is a binary relation then its **inverse** $R^{-1} \subseteq Y \times X$ is defined as $R^{-1} = \{(y, x) : (x, y) \in R\}$

Examples: what is the inverse of:

"
$$x < y$$
"?

Inverse of relation

Discrete Mathematics

(c) Marci Sydow

Equivalence

Order relation

relation

If $R \subseteq X \times Y$ is a binary relation then its **inverse** $R^{-1} \subseteq Y \times X$ is defined as $R^{-1} = \{(y, x) : (x, y) \in R\}$

Examples: what is the inverse of:

"
$$x < y$$
"?

"x is a parent of y"?

Composition of relations

Discrete Mathematics

(c) Marcin Sydow

Properties

Equivalence

Order relation

N-ary relation If $S \subseteq A \times B$ and $R \subseteq B \times C$ are two binary relations on sets A,B and B,C, respectively, then the **composition** of these relations, denoted as $R \circ S$ is the binary relation defined as follows:

$$R \circ S = \{(a,c) \in A \times C : \exists_{b \in B} [(a,b) \in R \land (b,c) \in S]\}$$

Sometimes it is denoted as RS. If R = S then the composition of R with itself: $R \circ R$ can be denoted as R^2 .

More than 2 relations can be composed. We denote the n-th composition of R with itself as R^n (e.g. $R^3 = R \circ R \circ R$, etc.)

Composition is associative, i.e.:

$$(R \circ S) \circ T = R \circ (S \circ T)$$

Discrete Mathematics

(c) Marcii Sydow

Propertie

Equivalence relation

Order relation

N-ary

$$A = \{0, 1, 2, 3, 4\}, B = \{a, b, c\}, C = \{x, y, z, v\}$$

$$R = \{(1, a), (2, c), (3, a)\},$$

$$S = \{(a, z), (a, v), (b, x), (b, z), (c, y)\}$$

$$R \circ S = ?$$

Discrete Mathematics

(c) Marcii Sydow

Propertie

Equivalence relation

Order relation

N-ary relation:

$$A = \{0, 1, 2, 3, 4\}, B = \{a, b, c\}, C = \{x, y, z, v\}$$

$$R = \{(1, a), (2, c), (3, a)\},$$

$$S = \{(a, z), (a, v), (b, x), (b, z), (c, y)\}$$

$$R \circ S = \{(1, z), (1, v), (3, z), (3, v), (2, y)\}$$

Discrete Mathematics

(c) Marcir Sydow

Equivalence

Equivalence relation

Order relation

N-ary relation

$$A = \{0, 1, 2, 3, 4\}, B = \{a, b, c\}, C = \{x, y, z, v\}$$

$$R = \{(1, a), (2, c), (3, a)\},$$

$$S = \{(a, z), (a, v), (b, x), (b, z), (c, y)\}$$

 $R \circ S = \{(1, z), (1, v), (3, z), (3, v), (2, v)\}$

(some join operations in relational databases are based on this operator)

Discrete Mathematics

(c) Marcir Sydow

rioperties

Equivalence relation

Order relation

N-ary relation

$$A = \{0, 1, 2, 3, 4\}, B = \{a, b, c\}, C = \{x, y, z, v\}$$

$$R = \{(1, a), (2, c), (3, a)\},\$$

$$S = \{(a, z), (a, v), (b, x), (b, z), (c, y)\}$$

$$R \circ S = ?\{(1, z), (1, v), (3, z), (3, v), (2, y)\}$$

(some join operations in relational databases are based on this operator)

Is composition commutative?

Discrete Mathematics

(c) Marcin Sydow

Propertie

Equivalence relation

Order relation

N-ary relation

$$A = \{0, 1, 2, 3, 4\}, B = \{a, b, c\}, C = \{x, y, z, v\}$$

$$R = \{(1, a), (2, c), (3, a)\},\$$

$$S = \{(a, z), (a, v), (b, x), (b, z), (c, y)\}$$

$$R \circ S = ?\{(1, z), (1, v), (3, z), (3, v), (2, y)\}$$

(some join operations in relational databases are based on this operator)

Is composition commutative? (i.e. is $R \circ S$ the same as $S \circ R$ for any binary relations R, S?)

Discrete Mathematics

(c) Marcir Sydow

- . .

Equivalence relation

Order relation

N-ary relation

$$A = \{0, 1, 2, 3, 4\}, B = \{a, b, c\}, C = \{x, y, z, v\}$$

$$R = \{(1, a), (2, c), (3, a)\},\$$

$$S = \{(a, z), (a, v), (b, x), (b, z), (c, y)\}$$

$$R \circ S = ?\{(1, z), (1, v), (3, z), (3, v), (2, y)\}$$

(some join operations in relational databases are based on this operator)

Is composition commutative? (i.e. is $R \circ S$ the same as $S \circ R$ for any binary relations R, S?)

For what binary relations their composition is commutative?

Properties

Discrete Mathematics

(c) Marci Sydow

Properties

Equivalence relation

Order relation

N-ary relation The following abstract properties of binary relations are commonly used:

- reflexivity
- symmetry
- counter-symmetry
- anti-symmetry
- transitivity
- connectedness

Discrete Mathematics

(c) Marci Sydow

Properties

Equivalence relation

Order

N-ary relations Binary relation $R \subseteq X \times X$ is **reflexive** iff:

 $\forall x \in X xRx$

Examples? (assume X is the set of all positive naturals)

Discrete Mathematics

(c) Marci Sydow

Properties

Equivalence relation

Order relation

N-ary relations Binary relation $R \subseteq X \times X$ is **reflexive** iff:

 $\forall x \in X xRx$

Examples? (assume *X* is the set of all positive naturals) "x is a divisor of y"?

Discrete Mathematics

(c) Marci Sydow

Properties

Equivalence relation

Order relation

N-ary relations Binary relation $R \subseteq X \times X$ is **reflexive** iff:

$$\forall x \in X xRx$$

Examples? (assume X is the set of all positive naturals)

"x is a divisor of y"?

$$x < y$$
?

Discrete Mathematics

(c) Marci Sydow

Properties

Equivalence relation

Order relation

N-ary relations

Binary relation $R \subseteq X \times X$ is **reflexive** iff:

$$\forall x \in X xRx$$

Examples? (assume X is the set of all positive naturals)

"x is a divisor of y"?

$$x < y$$
?

diagonal relation Δ (i.e. x == y)?

Discrete Mathematics

(c) Marci Sydow

Properties

Equivalence relation

Order relation

N-ary relations Binary relation $R \subseteq X \times X$ is **symmetric** iff:

$$\forall x, y \in X \ xRy \Rightarrow yRx$$

Examples? (assume X is the set of all positive naturals)

Discrete Mathematics

(c) Marci Sydow

Properties

Equivalence relation

Order relation

N-ary relations Binary relation $R \subseteq X \times X$ is **symmetric** iff:

$$\forall x, y \in X \ xRy \Rightarrow yRx$$

Examples? (assume *X* is the set of all positive naturals) "x and y have common divisor"?

Discrete Mathematics

(c) Marci Sydow

Properties

Equivalence relation

Order relation

N-ary relations Binary relation $R \subseteq X \times X$ is **symmetric** iff:

$$\forall x, y \in X \ xRy \Rightarrow yRx$$

Examples? (assume *X* is the set of all positive naturals)

"x and y have common divisor"?

$$x \leq y$$
?

Discrete Mathematics

(c) Marci Sydow

Properties

Equivalence relation

Order relation

N-ary relations Binary relation $R \subseteq X \times X$ is **symmetric** iff:

$$\forall x, y \in X \ xRy \Rightarrow yRx$$

Examples? (assume *X* is the set of all positive naturals) "x and y have common divisor"?

$$x \le y$$
?

$$x == y$$
?

Counter-symmetry

Discrete Mathematics

(c) Marci Sydow

Properties

Equivalence relation

Order relation

relation N-arv Binary relation $R \subseteq X \times X$ is **counter-symmetric** iff:

$$\forall x, y \in X \, xRy \Rightarrow \neg(yRx)$$

Examples? (assume X is the set of all positive naturals)

Counter-symmetry

Discrete Mathematics

(c) Marci Sydow

Properties

Equivalence relation

Order relation

N-ary relations Binary relation $R \subseteq X \times X$ is **counter-symmetric** iff:

$$\forall x,y \in X \, xRy \Rightarrow \neg (yRx)$$

Examples? (assume *X* is the set of all positive naturals) "x and y have common divisor"?

Counter-symmetry

Discrete Mathematics

(c) Marci Sydow

Properties

Equivalence relation

Order relation

N-ary relations Binary relation $R \subseteq X \times X$ is **counter-symmetric** iff:

$$\forall x,y \in X \, xRy \Rightarrow \neg (yRx)$$

Examples? (assume *X* is the set of all positive naturals)

"x and y have common divisor"?

$$x < y$$
?

Counter-symmetry

Discrete Mathematics

(c) Marci Sydow

Properties

relation relation

Order relation

N-ary relations Binary relation $R \subseteq X \times X$ is **counter-symmetric** iff:

$$\forall x, y \in X \, xRy \Rightarrow \neg (yRx)$$

Examples? (assume X is the set of all positive naturals) "x and y have common divisor"?

$$x < y$$
?

$$x == y$$
?

Discrete Mathematics

(c) Marci Sydow

Properties

Equivalence relation

Order relation

N-ary relations Binary relation $R \subseteq X \times X$ is **anti-symmetric** iff:

$$\forall x,y \in X \, xRy \land yRx \Rightarrow x = y$$

Examples? (assume X is the set of all positive naturals)

Discrete Mathematics

(c) Marci Sydow

Properties

Equivalence relation

Order relation

N-ary relations Binary relation $R \subseteq X \times X$ is **anti-symmetric** iff:

$$\forall x,y \in X \, xRy \land yRx \Rightarrow x = y$$

Examples? (assume *X* is the set of all positive naturals) "x and y have common divisor"?

Discrete Mathematics

(c) Marci Sydow

Properties

Equivalence relation

Order relation

N-ary relations Binary relation $R \subseteq X \times X$ is **anti-symmetric** iff:

$$\forall x,y \in X \, xRy \land yRx \Rightarrow x = y$$

Examples? (assume *X* is the set of all positive naturals)

"x and y have common divisor"?

$$x \leq y$$
?

Discrete Mathematics

(c) Marci Sydow

Properties

Equivalence relation

Order relation

N-ary relations Binary relation $R \subseteq X \times X$ is **anti-symmetric** iff:

$$\forall x, y \in X \, xRy \land yRx \Rightarrow x = y$$

Examples? (assume X is the set of all positive naturals)

"x and y have common divisor"?

$$x \leq y$$
?

"x is a divisor of y"?

Discrete Mathematics

(c) Marci Sydow

Properties

Equivalence relation

Order relation

N-ary relations Binary relation $R \subseteq X \times X$ is **transitive** iff:

$$\forall (x,y,z) \in X, xRy \land yRz \Rightarrow xRz$$

Examples? (assume X is the set of all positive naturals)

Discrete Mathematics

(c) Marci Sydow

Properties

Equivalence relation

Order relation

N-ary relations Binary relation $R \subseteq X \times X$ is **transitive** iff:

$$\forall (x,y,z) \in X, xRy \land yRz \Rightarrow xRz$$

Examples? (assume X is the set of all positive naturals) "x and y have common divisor"?

Discrete Mathematics

(c) Marci Sydow

Properties

Equivalence relation

Order relation

N-ary relations Binary relation $R \subseteq X \times X$ is **transitive** iff:

$$\forall (x,y,z) \in X, xRy \land yRz \Rightarrow xRz$$

Examples? (assume *X* is the set of all positive naturals)

"x and y have common divisor"?

$$x \leq y$$
?

Discrete Mathematics

(c) Marci Sydow

Properties

Equivalence relation

Order relation

N-ary relations Binary relation $R \subseteq X \times X$ is **transitive** iff:

$$\forall (x,y,z) \in X, xRy \land yRz \Rightarrow xRz$$

Examples? (assume *X* is the set of all positive naturals) "x and y have common divisor"?

$$x \leq y$$
?

$$x == y$$
?

Closure of a relation

Discrete Mathematics

(c) Marcin Sydow

Properties

Equivalence relation

Order relation

N-ary relations A closure of a binary relation R with regard to (wrt) some property P is the binary relation S such that the following conditions hold:

- S has the property P
- \blacksquare $R \subseteq S$ (S "extends" R)
- S is the smallest (with regard to inclusion) relation satisfying the two above conditions (i.e. for any T such that $R \subseteq T$ it holds that $S \subseteq T$.

The property P can be for example: transitivity, symmetry, reflexivity, etc.

Notice: the closure of relation may not exist (example?:

Closure of a relation

Discrete Mathematics

(c) Marcin Sydow

Properties

Equivalenc

Order

relation

N-ary relations

A closure of a binary relation R with regard to (wrt) some property P is the binary relation S such that the following conditions hold:

- S has the property P
- $R \subseteq S$ (S "extends" R)
- S is the smallest (with regard to inclusion) relation satisfying the two above conditions (i.e. for any T such that $R \subseteq T$ it holds that $S \subseteq T$.

The property P can be for example: transitivity, symmetry, reflexivity, etc.

Notice: the closure of relation may not exist (example?: a counter-symmetric closure of a symmetric relation, etc.)

Discrete Mathematics

(c) Marci Sydow

Properties

Equivalence relation

Order relation

N-ary relations If R is a binary relation, lets consider how to compute its reflexive, symmetric and transitive closure:

• reflexive closure of *R*?

Discrete Mathematics

(c) Marci Sydow

Properties

Equivalence relation

Order relation

N-ary relations If R is a binary relation, lets consider how to compute its reflexive, symmetric and transitive closure:

- reflexive closure of R? $R \cup \Delta$
- symmetric closure of R?

Discrete Mathematics

(c) Marci Sydow

Properties

Equivalence relation

Order relation

N-ary relations If *R* is a binary relation, lets consider how to compute its reflexive, symmetric and transitive closure:

- reflexive closure of R? $R \cup \Delta$
- symmetric closure of R? $R \cup R^{-1}$
- transtitive closure of R?

Discrete Mathematics

(c) Marci Sydow

Properties

Equivalence relation

Order relation

N-ary relations If *R* is a binary relation, lets consider how to compute its reflexive, symmetric and transitive closure:

- reflexive closure of R? $R \cup \Delta$
- symmetric closure of R? $R \cup R^{-1}$
- transtitive closure of R? $R \cup R^2 \cup R^3 ... = \bigcup_{i \in N^+} R^i$

Discrete Mathematics

(c) Marcii Sydow

Properties

Equivalence relation

Order relation

N-ary relations For a binary relation $R \subseteq X^2$ its **transitive closure** is defined as the smallest relation T so that T is transitive and $R \subseteq T$ Example: transitive closure of:

Discrete Mathematics

(c) Marci Sydow

Properties

Equivalence relation

Order relation

N-ary relations For a binary relation $R \subseteq X^2$ its **transitive closure** is defined as the smallest relation T so that T is transitive and $R \subseteq T$

Example: transitive closure of:

"x is a son of y"?

Discrete Mathematics

(c) Marci Sydow

Properties

Equivalence relation

Order relation

N-ary relations For a binary relation $R \subseteq X^2$ its **transitive closure** is defined as the smallest relation T so that T is transitive and $R \subseteq T$

Example: transitive closure of:

"x is a son of y"?

"
$$x == y$$
"?

Discrete Mathematics

(c) Marci Sydow

Properties

Equivalence relation

Order relation

N-ary relations For a binary relation $R \subseteq X^2$ its **transitive closure** is defined as the smallest relation T so that T is transitive and $R \subseteq T$

Example: transitive closure of:

"x is a son of y"?

"x == y"?

" $x \ge y$ "?

Equivalence relation

Discrete Mathematics

(c) Marci Sydow

Propertie

Equivalence relation

Order relation

N-ary relation: A binary relation $R \subseteq X^2$ is **equivalence relation** iff it is:

- reflexive
- symmetric
- transitive

Discrete Mathematics

(c) Marci Sydow

operties

Equivalence relation

Order relation

N-arv

Examples? (assume X is the set of all positive naturals)

Discrete Mathematics

(c) Marcii Sydow

ropertie

Equivalence relation

Order relation

N-ary relations Examples? (assume X is the set of all positive naturals)

$$x == y$$
?

Discrete Mathematics

(c) Marci Sydow

Equivalence

Equivalence relation

relation

N-ary relations Examples? (assume X is the set of all positive naturals)

$$x == y$$
?

"x and y have common divisor"?

Discrete Mathematics

(c) Marci Sydow

Equivalence

Equivalence relation

relation

N-ary relations Examples? (assume X is the set of all positive naturals)

$$x == y$$
?

"x and y have common divisor"?

$$x \le y$$
?

Discrete Mathematics

(c) Marci Sydow

- . .

Equivalence relation

relation

N-ary relations Examples? (assume X is the set of all positive naturals)

$$x == y$$
?

"x and y have common divisor"?

$$x \leq y$$
?

"x-y is even"?

Equivalence class

Discrete Mathematics

(c) Marci Sydow

Propertie

Equivalence relation

Order relation

N-ary relations An **equivalence class** of the element $x \in X$ of the equivalence relation $R \subset X^2$ is defined as:

$$[x]_R = \{y \in X : xRy\}$$

(notice that, due to symmetry of equivalence relation, xRy is equivalent to yRx)

For $[x]_R$, x is called the **representative** of this equivalence class.

There can be many representatives of the same equivalence class.

Partition of a set

Discrete Mathematics

(c) Marcir Sydow

Propertie

Equivalence relation

Order relation

N-ary relation A family F of non-empty subsets of some set X is called **partition** of X if the following two conditions hold:

- for any two different $A, B \in F$ it holds that $A \cap B = \emptyset$
- X is the union of all sets from $F(X = \bigcup F)$

Each set from *F* is called a **partition block**.

Examples?

Partition of a set

Discrete Mathematics

(c) Marcii Sydow

Propertie

Equivalence relation

Order relation

N-ary relation A family F of non-empty subsets of some set X is called **partition** of X if the following two conditions hold:

- for any two different $A, B \in F$ it holds that $A \cap B = \emptyset$
- X is the union of all sets from $F(X = \bigcup F)$

Each set from F is called a partition block.

Examples?

odd an even numbers form two blocks of partition of integers

Properties of equivalence classes

Discrete Mathematics

(c) Marcii Sydow

Propertie

Equivalence relation

Order relation

N-ary

If $[x]_R$ and $[y]_R$ are two equivalence classes of some equivalence relation R, then either:

- $[x]_R \cap [y]_R = \emptyset$ (do not intersect) or:
- $[x]_R == [y]_R$ (are identical)

Since $\forall x \in X [x]_R \neq \emptyset$ (due to reflexivity of R), and different equivalence classes are disjoint the following holds:

The equivalence classes **partition** the domain of the equivalence relation.

Discrete Mathematics

(c) Marci Sydow

Propertie

Equivalence relation

Order

N-ary

What are the equivalence classes of the following equivalence relations?

- x == y
- "x has the same diploma supervisor as y"

Quotient of the set by equivalence relation R (operation of abstraction)

Discrete Mathematics

(c) Marci Sydow

Propertie

Equivalence relation

Order

N-ary

Given an equivalence relation $R \subseteq X^2$ we call the family of all its equivalence classes the **quotient of X by R**:

$$X/R = \{[x]_R : x \in X\}$$

(the similarity to division symbol for numbers is not coincidental, since it has some similar properties)

The X/R operation is also called the "abstraction operation", i.e. we abstract from any properties that are indifferent for the equivalence relation R.

Discrete Mathematics

(c) Marci Sydow

roperties

Equivalence relation

Order relation

N-ary

What is X/R if:

Discrete Mathematics

(c) Marci Sydow

Propertie

Equivalence relation

Order relation

N-ary

What is X/R if:

• X is the set of natural numbers and R is equality (x = y)?

Discrete Mathematics

(c) Marci Sydow

Propertie

Equivalence relation

Order

N-ary relation:

What is X/R if:

- **X** is the set of natural numbers and R is equality (x = y)?
- P is the set of students and R is the set of pairs of students that have the same diploma supervisor?

Order

Discrete Mathematics

(c) Marcin Sydow

.....

Equivalence

Order relation

N-ary relations Consider a relation $R \subseteq X^2$ is called a **partial order** and four properties:

- 1 reflexive
- 2 anti-symmetric
- 3 transitive
- $\forall x, y \in X \ xRy \lor yRx$

Relation R is:

- partial order if it satisfies conditions 1-3 above
- quasi order if it satisfies only 1 and 2
- linear order if it satisfies all conditions 1-4 above

Discrete Mathematics

(c) Marci Sydow

r Fantalia

Equivalence relation

Order relation

N-ary relation Is the following relation a partial order, quasi order, linear order, ?

- $\blacksquare \le (\text{on numbers}) ?$
- lacksquare Δ (on any set)? ("x=y")
- (on numbers)
- $\blacksquare \subseteq (\mathsf{on} \; \mathsf{sets})?$

Generalisation: n-ary relation

Discrete Mathematics

(c) Marci Sydow

Properties

Equivalence

Order relation

N-ary relations An n-ary relation R, for $n \in \mathcal{N}$ is defined as $R \subseteq X_1 \times X_2 \dots X_n$. Binary relation is a special case for n = 2. In particular, for:

- n = 1, 1-ary relation is the set of some elements of the domain that satisfy some property (e.g. even numbers, etc.)
- n = 0, 0-ary relation, that is empty can be theoretically interpreted as a *constant* in the domain of the relation (e.g. "0" in natural numbers) that has some special properties

Example tasks/questions/problems

Discrete Mathematics

(c) Marci Sydow

Fauivalenc

relation

Order relation

N-ary relations For each of the following: precise definition and ability to compute on the given example (if applicable):

- Relation and basic concepts
- Properties of binary relations
- Composition and inverse
- Equivalence relation, equivalence classes

Discrete Mathematics

Sydow

'roperties

Equivalence

Order

N-ary relations

Thank you for your attention.