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Binary relation

Let A,B be two sets. A binary relation between the elements
of A and B is any subset of the Cartesian product of A and B ,
i.e. R ⊆ A× B .

We denote relations by capital letters, e.g. R, S , etc.

We say that two elements a ∈ A and b ∈ B are in relation R iff
the pair (a, b) ∈ R (it can be also denoted as: aRb).
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Examples

empty relation (no pair belongs to it)
diagonal relation ∆ = {(x , x) : x ∈ X} (it is the “equality”
relation)
full relation: any pair belongs to it (i.e. R = X 2)
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Binary relation as a predicate and as a graph

Binary relation can be represented as a predicate with 2 free
variables as follows:

Given a predicate R(x , y), for x ∈ X and y ∈ Y , the relation is
the set of all pairs (x , y) ∈ X × Y that satisfy the predicate
(i.e. make it true)

Each binary relation can be naturally represented as a graph.
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Example

R(x , y): “x is less than y”

The relation R represented by the above predicate is the set of
all pairs (x , y) ∈ X × Y so that R(x , y) is true (i.e. x < y)
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Examples of binary relations

A = B = N

diagonal relation ∆ (x = y)
x > y
x ≤ y
x is a divisor of y
x and y have common divisor
x2 + y2 ≥ 10
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More examples

Examples of relations on the set P ×P , where P is the set of all
people.

(x , y) ∈ R ⇔ x is a son of y
(x , y) ∈ R ⇔ x is the mother of y
(x , y) ∈ R ⇔ x is the father of y
(x , y) ∈ R ⇔ x is a grandmother of y
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More examples

Examples of R ⊆ P × C , where C is the set of all courses in the
univeristy for last 5 years.

(p, c) ∈ R ⇔ p passed course c
(p, c) ∈ R ⇔ p attended course c
(p, c) ∈ R ⇔ p thinks course c is interesting
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Domain and co-domain of relation

For binary relation R ⊆ A× B , the set A is called its domain
and B is called its co-domain

Domain and co-domain can be the same set.
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Image and pre-image of relation

Pre-image of binary relation R ⊆ X × Y :
{x ∈ X : ∃y ∈ Y (x , y) ∈ R}
Image of binary relation R ⊆ X × Y :
{y ∈ Y : ∃x ∈ X (x , y) ∈ R}
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Example

A = {1, 3, 5, 6}, B = {3, 4, 5, 6, 7}. Relation R ⊆ A× B is
defined as follows:

xRy ⇔ x > y
R =?

{(5, 3), (5, 4), (6, 3), (6, 4), (6, 5)}
domain of R?: A
co-domain of R?: B
pre-image of R?: {5, 6}
image of R?: {3, 4, 5}
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Inverse of relation

If R ⊆ X × Y is a binary relation then its inverse
R−1 ⊆ Y × X is defined as R−1 = {(y , x) : (x , y) ∈ R}
Examples: what is the inverse of:
“x < y”?

“x is a parent of y”?
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Composition of relations

If S ⊆ A× B and R ⊆ B × C are two binary relations on sets
A,B and B,C, respectively, then the composition of these
relations, denoted as R ◦ S is the binary relation defined as
follows:

R ◦ S = {(a, c) ∈ A× C : ∃b∈B [(a, b) ∈ R ∧ (b, c) ∈ S ]}

Sometimes it is denoted as RS . If R = S then the composition
of R with itself: R ◦ R can be denoted as R2.

More than 2 relations can be composed. We denote the n-th
composition of R with itself as Rn (e.g. R3 = R ◦ R ◦ R , etc.)

Composition is associative, i.e.:
(R ◦ S) ◦ T = R ◦ (S ◦ T )
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Example

A = {0, 1, 2, 3, 4}, B = {a, b, c}, C = {x , y , z , v}
R = {(1, a), (2, c), (3, a)},
S = {(a, z), (a, v), (b, x), (b, z), (c , y)}
R ◦ S =?

{(1, z), (1, v), (3, z), (3, v), (2, y)}
(some join operations in relational databases are based on this
operator)

Is composition commutative?(i.e. is R ◦ S the same as S ◦ R for
any binary relations R, S?)

For what binary relations their composition is commutative?
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(some join operations in relational databases are based on this
operator)

Is composition commutative?

(i.e. is R ◦ S the same as S ◦ R for
any binary relations R, S?)

For what binary relations their composition is commutative?
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Properties

The following abstract properties of binary relations are
commonly used:

reflexivity
symmetry
counter-symmetry
anti-symmetry
transitivity
connectedness
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Reflexivity

Binary relation R ⊆ X × X is reflexive iff:

∀x ∈ X xRx

Examples? (assume X is the set of all positive naturals)

“x is a divisor of y”?
x < y?
diagonal relation ∆ (i.e. x == y)?
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Symmetry

Binary relation R ⊆ X × X is symmetric iff:

∀x , y ∈ X xRy ⇒ yRx

Examples? (assume X is the set of all positive naturals)

“x and y have common divisor”?
x ≤ y ?
x == y ?
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Symmetry

Binary relation R ⊆ X × X is symmetric iff:

∀x , y ∈ X xRy ⇒ yRx

Examples? (assume X is the set of all positive naturals)
“x and y have common divisor”?

x ≤ y ?
x == y ?
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Counter-symmetry

Binary relation R ⊆ X × X is counter-symmetric iff:

∀x , y ∈ X xRy ⇒ ¬(yRx)

Examples? (assume X is the set of all positive naturals)

“x and y have common divisor”?
x < y ?
x == y ?



Discrete
Mathematics

(c) Marcin
Sydow

Properties

Equivalence
relation

Order
relation

N-ary
relations

Counter-symmetry

Binary relation R ⊆ X × X is counter-symmetric iff:

∀x , y ∈ X xRy ⇒ ¬(yRx)

Examples? (assume X is the set of all positive naturals)
“x and y have common divisor”?

x < y ?
x == y ?



Discrete
Mathematics

(c) Marcin
Sydow

Properties

Equivalence
relation

Order
relation

N-ary
relations

Counter-symmetry

Binary relation R ⊆ X × X is counter-symmetric iff:

∀x , y ∈ X xRy ⇒ ¬(yRx)

Examples? (assume X is the set of all positive naturals)
“x and y have common divisor”?
x < y ?

x == y ?



Discrete
Mathematics

(c) Marcin
Sydow

Properties

Equivalence
relation

Order
relation

N-ary
relations

Counter-symmetry

Binary relation R ⊆ X × X is counter-symmetric iff:

∀x , y ∈ X xRy ⇒ ¬(yRx)

Examples? (assume X is the set of all positive naturals)
“x and y have common divisor”?
x < y ?
x == y ?



Discrete
Mathematics

(c) Marcin
Sydow

Properties

Equivalence
relation

Order
relation

N-ary
relations

Anti-Symmetry

Binary relation R ⊆ X × X is anti-symmetric iff:

∀x , y ∈ X xRy ∧ yRx ⇒ x = y

Examples? (assume X is the set of all positive naturals)

“x and y have common divisor”?
x ≤ y ?
”x is a divisor of y” ?
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Transitivity

Binary relation R ⊆ X × X is transitive iff:

∀(x , y , z) ∈ X , xRy ∧ yRz ⇒ xRz

Examples? (assume X is the set of all positive naturals)

“x and y have common divisor”?
x ≤ y ?
x == y ?
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Closure of a relation

A closure of a binary relation R with regard to (wrt) some
property P is the binary relation S such that the following
conditions hold:

S has the property P
R ⊆ S (S “extends” R)
S is the smallest (with regard to inclusion) relation
satisfying the two above conditions (i.e. for any T such
that R ⊆ T it holds that S ⊆ T .

The property P can be for example: transitivity, symmetry,
reflexivity, etc.

Notice: the closure of relation may not exist
(example?:

a counter-symmetric closure of a symmetric
relation, etc.)
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Examples: How to compute the closure of a
relation?

If R is a binary relation, lets consider how to compute its
reflexive, symmetric and transitive closure:

reflexive closure of R?

R ∪∆

symmetric closure of R? R ∪ R−1

transtitive closure of R? R ∪ R2 ∪ R3... =
⋃

i∈N+ R i
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Examples: transitive closure of relation

For a binary relation R ⊆ X 2 its transitive closure is defined
as the smallest relation T so that T is transitive and R ⊆ T

Example: transitive closure of:

“x is a son of y”?
“x == y”?
“x ≥ y ”?
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Equivalence relation

A binary relation R ⊆ X 2 is equivalence relation iff it is:

reflexive
symmetric
transitive
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Examples? (assume X is the set of all positive naturals)

x == y ?
“x and y have common divisor”?
x ≤ y ?
“x-y is even”?
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Equivalence class

An equivalence class of the element x ∈ X of the equivalence
relation R ⊆ X 2 is defined as:

[x ]R = {y ∈ X : xRy}

(notice that, due to symmetry of equivalence relation, xRy is
equivalent to yRx)

For [x ]R , x is called the representative of this equivalence
class.

There can be many representatives of the same equivalence
class.
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Partition of a set

A family F of non-empty subsets of some set X is called
partition of X if the following two conditions hold:

for any two different A,B ∈ F it holds that A ∩ B = ∅
X is the union of all sets from F (X =

⋃
F )

Each set from F is called a partition block.

Examples?

odd an even numbers form two blocks of partition of integers
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Properties of equivalence classes

If [x ]R and [y ]R are two equivalence classes of some equivalence
relation R, then either:

[x ]R ∩ [y ]R = ∅ (do not intersect)
or:
[x ]R == [y ]R (are identical)

Since ∀x ∈ X [x ]R 6= ∅ (due to reflexivity of R), and different
equivalence classes are disjoint the following holds:

The equivalence classes partition the domain of the
equivalence relation.
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Example

What are the equivalence classes of the following equivalence
relations?

x == y

“x has the same diploma supervisor as y”
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Quotient of the set by equivalence relation R
(operation of abstraction)

Given an equivalence relation R ⊆ X 2 we call the family of all
its equivalence classes the quotient of X by R:

X/R = {[x ]R : x ∈ X}
(the similarity to division symbol for numbers is not
coincidental, since it has some similar properties)

The X/R operation is also called the “abstraction operation”,
i.e. we abstract from any properties that are indifferent for the
equivalence relation R.
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Example

What is X/R if:

X is the set of natural numbers and R is equality (x = y)?
P is the set of students and R is the set of pairs of
students that have the same diploma supervisor?
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Order

Consider a relation R ⊆ X 2 is called a partial order and four
properties:

1 reflexive
2 anti-symmetric
3 transitive
4 ∀x , y ∈ X xRy ∨ yRx

Relation R is:
partial order if it satisfies conditions 1-3 above
quasi order if it satisfies only 1 and 2
linear order if it satisfies all conditions 1-4 above
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Examples

Is the following relation a partial order, quasi order, linear order,
?

≤ (on numbers) ?
∆ (on any set)? (“x=y”)
< (on numbers)
⊆ (on sets)?
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Generalisation: n-ary relation

An n-ary relation R , for n ∈ N is defined as R ⊆ X1×X2 . . .Xn.
Binary relation is a special case for n = 2.
In particular, for:

n = 1, 1-ary relation is the set of some elements of the
domain that satisfy some property (e.g. even numbers,
etc.)
n = 0, 0-ary relation, that is empty can be theoretically
interpreted as a constant in the domain of the relation (e.g.
“0” in natural numbers) that has some special properties
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Example tasks/questions/problems

For each of the following: precise definition and ability to
compute on the given example (if applicable):

Relation and basic concepts
Properties of binary relations
Composition and inverse
Equivalence relation, equivalence classes
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Thank you for your attention.
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