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�Divide and Conquer� and Searching

search(S, len, key)

(input sequence is sorted)

The Binary Search Algorithm (the �Divide and Conquer�
approach)

1 while the length of sequence is positive:

2 check the middle element of the current sequence

3 if it is equal to key - return the result

4 if it is higher than key - restrict searching to the �left�
sub-sequence (from the current position)

5 if it is less than key - restrict searching to the �right�
sub-sequence (from the current position)

6 back to the point 1

7 there is no key in the sequence (if you are here)
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Binary Search Algorithm

search(S, len, key){

l = 0

r = len - 1

while(l <= r){

m = (l + r)/2

if(S[m] == key) return m

else

if(S[m] > key) r = m - 1

else l = m + 1

}

return -1

}

Notice that the operation of random access (direct access) to
the m-th element S[m] of the sequence demands that the
sequence is kept in RAM (to make the operation e�cient)



Selected
Topics in
Algorithms

Marcin
Sydow

Binary
Search

Recursion

Sorting

Selection Sort

Insertion Sort

Merge Sort

QuickSort

Solving
Recurrent
Equations

Linear
2nd-order
Equations

Important 3
Cases

Quicksort
Average
Complexity

Master
Theorem

Recursion

e.g.: n! = (n − 1)!n

Mathematics: recurrent formula or de�nition

Programming: function that calls itself

Algorithms: reduction of an instance of a problem to a
smaller instance of the same problem (�divide and
conquer�)

Warning: should be well founded on the trivial case:

e.g.: 0! = 1
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Example

step:

Finonacci(n+1) = Fibonacci(n) + Fibonacci(n-1)

base:

Fibonacci(0) = Fibonacci(1) = 1

1,1,2,3,5,8,13,21,34,...
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Recursion as an Algorithmic Tool

A powerful method for algorithm design

It has positive and negative aspects, though:

(positive) very compact representation of an algorithm

(negative) recursion implicitly costs additional memory for
keeping the recursion stack
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Example

What happens on your machine when you call the following
function for n=100000?

triangleNumber(n){

if (n > 0) return triangleNumber(n-1) + n

else return 0

}

Iterative version of the above algorithm would not cause any
problems on any reasonable machine.

In �nal implementation, recursion should be avoided or
translated to iterations whenever possible (not always possible),
due to the additional memory cost for keeping the recursion
stack (that could be fatal...)
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Hanoi Towers

A riddle:

Three vertical sticks A, B and C. On stick A, stack of n rings,
each of di�erent size, always smaller one lies on a bigger one.
Move all rings one by one from A to C, respecting the following
rule �bigger ring cannot lie on a smaller one� (it is possible to
use the helper stick B)
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Hanoi Towers - number of moves

How many moves are needed for moving n rings?
(hanoi(n) = ?)

This task can be easily solved with recurrent approach.

If we have 1 ring, we need only 1 move (A -> C). For more
rings, if we know how to move n-1 top rings to B, then we need
to move the largest ring to C, and �nally all rings from B to C.

Thus, we obtain the following recurrent equations:
base:
hanoi(1) = 1

step:
hanoi(n) = hanoi(n-1) + 1 + hanoi(n-1) = 2*hanoi(n-1) + 1
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Sorting

Input: S - sequence of elements that can be ordered (according
to some binary total-order relation R ⊆ S × S); len - the length
of sequence (natural number)

Output: S' - non-decreasingly sorted sequence consisting of
elements of multi-set of the input sequence S (e.g.
∀0<i<len(S [i − 1], S [i ]) ∈ R)

In this course, for simplicity, we assume sorting natural numbers,
but all the discussed algorithms which use comparisons can be
easily adapted to sort any other ordered universe.
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The Importance of Sorting

Sorting is one of the most important and basic operations in
any real-life data processing in computer science. For this
reason it was very intensively studied since the half of the 20th
century, and currently is regarded as a well studied problem in
computer science.

Examples of very important applications of sorting:

acceleration of searching

acceleration of operations on relations �by key�, etc. (e.g.
in databases)

data visualisation

computing many important statistical characteristics

And many others.
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Selection Sort

The idea is simple. Identify the minimum (len times) excluding
it from the further processing and putting on the next position
in the output sequence:

selectionSort(S, len){

i = 0

while(i < len){

mini = indexOfMin(S, i, len)

swap(S, i, mini)

i++

}

}

where:
indexOfMin(S, i, len) - return index of minimum among the
elements S [j ], where i ≤ j < len

swap(S, i, mini) - swap the positions of S[i] and S[mini]

What is the invariant of the above loop?
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Insertion Sort

insertionSort(arr, len){

for(next = 1; next < len; next++){

curr = next;

temp = arr[next];

while((curr > 0) && (temp < arr[curr - 1])){

arr[curr] = arr[curr - 1];

curr--;

}

arr[curr] = temp;

}

}

What is the invariant of the external loop?
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Insertion Sort - Analysis

(dominating operation and data size n is the same for all the
algorithms discussed in this lecture)

What is the pessimistic case?

When the data is invertedly sorted. Then the complexity is:

W (n) = n(n−1)
2 = 1

2n
2 + Θ(n) = Θ(n2)

This algorithm is much more �intelligent� than the previous,
because it adapts the amount of work to the degree of
sortedness of the input data - the more sorted input the less
number of comparisons (and swaps). In particular, for already
sorted data it needs only n-1 comparisons (is linear in this case
- very fast!).
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Average Time Complexity Analysis

Let's assume a simple model of input data - each permutation
of input elements is equally likely. Then, for i-th iteration of the
external loop the algorithm will need (on average):

1
i

∑i
j=1 j = 1

i
(i+1)i

2 = i+1
2

comparisons. Thus, we obtain:

A(n) =
∑n−1

i=1
i+1
2 = 1

2

∑n
k=2 k = 1

4n
2 + Θ(n) = Θ(n2)
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Divide and conquer sorting (1) - Merge Sort

Let's apply the �divide and conquer� approach to the sorting
problem.

1 divide the sequence into 2 halves

2 sort each half separately

3 merge the sorted halves

This approach is successful because sorted subsequences can be
merged very quickly (i.e. with merely linear complexity)

Moreover, let's observe that sorting in point 2 can be
recursively done with the same method (until the �halves� have
zero lengths)

Thus, we have a working recursive sorting scheme (by merging).
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Merge Sort - Scheme

mergeSort(S, len){

if(len <= 1) return S[0:len]

m = len/2

return merge(mergeSort(S[0:m], m), m

mergeSort(S[m:len], len-m), len-m)

}

where:

denotation S[a:b] means the subsequence of elements S[i] such
that a ≤ i < b

the function merge(S1, len1, S2, len2) merges 2 (sorted)
sequences S1 and S2 (of lengths len1 and len2) and returns the
merged (and sorted) sequence.
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Merge Function

input: a1, a2 - sorted sequences of numbers (of lengths len1,
len2)
output: return merged (and sorted) sequences a1 and a2

merge(a1, len1, a2, len2){

i = j = k = 0;

result[len1 + len2] // memory allocation

while((i < len1) && (j < len2))

if(a1[i] < a2[j]) result[k++] = a1[i++];

else result[k++] = a2[j++];

while(i < len1) result[k++] = a1[i++];

while(j < len2) result[k++] = a2[j++];

return result;

}
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Quick Sort - idea

Quick sort is based on the �divide and conquer� approach.

The idea is as follows (recursive version):

1 For the sequence of length 1 nothing has to be done (stop
the recursion)

2 longer sequence is reorganised so that some element M
(called �pivot�) of the sequence is put on ��nal� position so
that there is no larger element �to the left� of M and no
smaller element �to the right� of M.

3 subsequently steps 1 and 2 are applied to the �left� and
�right� subsequences (recursively)

The idea of quick sort comes from C.A.R.Hoare.
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Partition procedure - reminder

partition(S, l, r)

For a given sequence S (bound by two indexes l and r) the
partition procedure selects some element M (called �pivot�)
and e�ciently reorganises the sequence so that M is put on
such a ��nal� position so that there is no larger element �to the
left� of M and no smaller element �to the right� of M.
The partition procedure returns the �nal index of element M.

For the following assumptions:

Dominating operation: comparing 2 elements

Data size: the length of the array n = (r − l + 1)

The partition procedure can be implemented so that it's time
complexity is W (n) = A(n) = Θ(n) and space complexity is
S(n) = O(1)
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Partition - possible implementation

input: a - array of integers; l,r - leftmost and rightmost indexes,
respectively;
output: the �nal index of the �pivot� element M; the side e�ect:
array is reorganised (no larger on left, no smaller on right)

partition(a, l, r){

i = l + 1;

j = r;

m = a[l];

temp;

do{

while((i < r) && (a[i] <= m)) i++;

while((j > i) && (a[j] >= m)) j--;

if(i < j) {temp = a[i]; a[i] = a[j]; a[j] = temp;}

}while(i < j);

// when (i==r):

if(a[i] > m) {a[l] = a[i - 1]; a[i - 1] = m; return i - 1;}

else {a[l] = a[i]; a[i] = m; return i;}

}
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QuickSort - pseudo-code

Having de�ned partition it is now easy to write a recursive
QuickSort algorithm described before:

input: a - array of integers; l,r - leftmost and rightmost indexes
of the array

(the procedure does not return anything)

quicksort(a, l, r){

if(l >= r) return;

k = partition(a, l, r);

quicksort(a, l, k - 1);

quicksort(a, k + 1, r);

}
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Solving Recurrent Equations

2 general methods:

1 expanding to sum

2 generating functions

illustration of the method 1:

hanoi(n) = 2 ∗ hanoi(n − 1) + 1 =
2 ∗ (2 ∗ hanoi(n − 2) + 1) + 1 = ... =

∑n−1
i 2i = 2n − 1

(method 2 is outside of the scope of this course)
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A general method for solving
2nd order linear recurrent equations

Assume the following recurrent equation:

sn = asn−1 + bsn−2

Then, solve the following characteristic equation:
x2 − ax − b = 0.

1 single solution r: sn = c1r
n + c2nr

n

2 two solutions r1, r2: sn = c1r
n
1 + c2r

n
2

for some constants c1, c2
(that can be found by substituting n = 0 and n = 1)
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Illustration of the Theorem

Finonacci(n+1) = Fibonacci(n) + Fibonacci(n-1)
Fibonacci(0) = Fibonacci(1) = 1

Fibonacci(50) = ?

From the last theorem it can be shown that:

Fibonacci(n) = 1√
5

((1+
√
5

2 )n+1 − (1−
√
5

2 )n+1)

(the �Euler-Binet� formula)
(BTW: it is incredible, but this is always a natural number!)

Lets guess what a number is Fibonacci(50)...
it is precisely 12 586 269 025 (over 12 billion!)
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Other Important Special Cases

Some types of recurrent equations are quite frequently
encountered in algorithmics.

I.e. time complexity function of some important algorithms is in
the form of a recurrent equation of such type

We show 3 of them with simple solutions (on rank of
complexity)
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Case 1

t(1) = 0
t(n) = t(n/2) + c; n>0, c ∈ N is a constant
(n/2 means b(n/2)c or d(n/2)e)

example of algorithm?

proof: (substitute n = 2k)

t(2k) = t(2k−1) + c = t(2k−2) + c + c = t(20) + kc = kc =
clog(n)

solution: t(n) = c(log(n)) = Θ(log(n)) (logarithmic)

example of algorithm:
binSearch (a version that assumes that the sequence contains the key, since

t(1) = 0)
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t(1) = 0)
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Case 2

t(1) = 0
t(n) = t(b(n/2)c) + t(d(n/2)e) + c; n>0, c ∈ N is a constant

example of algorithm?

proof: (substitute n = 2k)

t(2k) = 2t(2k−1) + c = 2(2t(2k−2) + c) + c =
22(t(2k−2)) + 21c + 20c =
2kt(20) + c(2k−1 + 2k−2 + ...+ 20) = 0+ c(2k − 1) = c(n− 1)

solution: t(n) = c(n − 1) = Θ(n) (linear)

example: maximum in sequence
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t(1) = 0
t(n) = t(b(n/2)c) + t(d(n/2)e) + c; n>0, c ∈ N is a constant

example of algorithm?

proof: (substitute n = 2k)

t(2k) = 2t(2k−1) + c = 2(2t(2k−2) + c) + c =
22(t(2k−2)) + 21c + 20c =
2kt(20) + c(2k−1 + 2k−2 + ...+ 20) = 0+ c(2k − 1) = c(n− 1)

solution: t(n) = c(n − 1) = Θ(n) (linear)

example: maximum in sequence
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Case 3

t(1) = 0
t(n) = t(b(n/2)c) + t(d(n/2)e) + cn; n>0, c ∈ N is a constant

example of algorithm?

proof: (substitute n = 2k)

t(2k) = 2t(2k−1) + c2k = 2(2t(2k−2) + c2k−1) + c2k =
22t(2k−2) + c2k + c2k = 2kt(20) + kc2k = 0 + cnlog(n)
solution: cn(log(n)) = Θ(nlog(n)) (linear-logarithmic)

example of algorithm: mergeSort
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Case 3

t(1) = 0
t(n) = t(b(n/2)c) + t(d(n/2)e) + cn; n>0, c ∈ N is a constant

example of algorithm?
proof: (substitute n = 2k)

t(2k) = 2t(2k−1) + c2k = 2(2t(2k−2) + c2k−1) + c2k =
22t(2k−2) + c2k + c2k = 2kt(20) + kc2k = 0 + cnlog(n)
solution: cn(log(n)) = Θ(nlog(n)) (linear-logarithmic)

example of algorithm: mergeSort
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Completing the Proofs

We solved the equations only for exact powers of 2, i.e. n = 2k .
The asymptotic bounds, however, will hold in general, due to
the following lemma:

If non-decreasing functions: t(n) : N → N and f (x) : R → R

satisfy:

t(2k) = Θ(f (2k)), for k ∈ N

∃x0>0∃c>0∀x≥x0 f (2x) ≤ cf (x)

Then t(n) = Θ(f (n)).

What functions satisfy the second condition?
(x , logx , xlogx , x2, 2x)?

Simple proofs presented on the last few slides are based on: Banachowski, Diks,

Rytter �Introduction to Algorithms�, Polish 3rd Edition, WNT, 2001, pp.20-21

and p.43; (BDR)
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Example - the Average Quicksort's Complexity

Lets solve the following recurrent equation:
A(0) = A(1) = 0
A(n) = (n + 1) + 1

n (
∑n

s=1(A(s − 1) + A(n − s))); n > 1

(The equation represents the average time complexity of some

version of quickSort, that can be found e.g. in BDR, with assumption

that input data is uniformly distributed among all permutations of n

elements)

A(n) = 2
n

∑n
s=1 A(s − 1) + (n + 1)

Transform the above to the two following equations:
nA(n) = 2

∑n
s=1 A(s − 1) + n(n + 1)

(n − 1)A(n − 1) = 2
∑n−1

s=1 A(s − 1) + (n − 1)n
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Average QuickSort's Complexity, cont.

Lets subtract the 2nd equation from the �rst:
nA(n)− (n − 1)A(n − 1) = 2A(n − 1) + 2n
nA(n) = (n + 1)A(n − 1) + 2n

A(n)
n+1 = A(n−1)

n + 2
n+1

Now, lets expand the last equation:

A(n)
n+1 = A(n−1)

n + 2
n+1 = a(n−2)

n−1 + 2
n + 2

n+1 =

= A(1)
2 + 2/3 + 2/4 + ...+ 2

n+1 =
2(1 + 1/2 + 1/3 + ...+ 1/(n + 1)− 3/2)

Thus,
A(n) = 2(n + 1)(1 + 1/2 + 1/3 + ...+ 1/(n + 1)− 3/2)
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Harmonic Number (cont. of the proof)

A(n) = 2(n + 1)(1 + 1/2 + 1/3 + ...+ 1/(n + 1)− 3/2)

The sum 1 + 1/2 + 1/3 + ...+ 1/n is called the
n-th harmonic number, denoted as Hn

It can be proved that asymptotically the following holds:

Hn = ln(n) + γ + O(n−1), where γ ≈ 0, 5772156... is called the
Euler's constant.

Thus, �nally we obtain:

A(n) = ( 2
log(e))(n + 1)log(n) + O(n) = 2

log(e)nlog(n) + O(n) =

Θ(nlog(n)) (the factor 2/log(e) ≈ 1.44)

This ends the proof of Θ(nlog(n)) average time complexity of
quickSort
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Master Theorem - Introduction

(Pol.: �twierdzenie o rekurencji uniwersalnej�)

A universal method for solving recurrent equations of the
following form:

T (n) = aT (n/b) + f (n)

where a ≥ 1, b > 1 : constants, f (n) is asymptotically positive

It can represent time complexity of a recurrent algorithm that
divides a problem to a sub-problems, each of size n/b and then
merges the sub-solutions with the additional complexity
described by f (n)

E.g. for mergeSort a = 2, b = 2, f (n) = Θ(n)
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Master Theorem (Pol.: �Twierdzenie o rekurencji uniwersalnej�)

Assume, T (n) : N → R is de�ned as follows:

T (n) = aT (n/b) + f (n)

where a ≥ 1, b > 1 : constants, n/b denotes b(n/b)c or d(n/b)e and
f (n) : R → R is asymptotically positive

Then T (n) can be asymptotically bounded as follows:

1 if f (n) = O(nlogba−ε) for some ε > 0, then
T (n) = Θ(nlogba)

2 if f (n) = Θ(nlogba), then T (n) = Θ(nlogbalgn)

3 if f (n) = Ω(nlogba+ε) for some ε > 0, and if asymptotically

af (n/b) ≤ cf (n) for some c < 1 (�regularity� condition), then
T (n) = Θ(f (n))

(Proof in CLR 4.4)
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Interpretation and "Gaps"in the Master Theorem

Lets interpret the Master Theorem. To put it simply, it
compares f (n) with nlogba and states that the function of the
higer rank of complexity determines the solution:

1 if f (n) is of polynomially lower rank than nlogba, the latter
dominates

2 if f (n) and nlogba are of the same rank, the lgn coe�cient
occurs

3 if f (n) is of polynomially higher rank than nlogba and
satis�es the �regularity� condition, the former function
represents the rank of complexity

Some cases are not covered by the Master Theorem, i.e. for
functions f (n) that fall into �gaps� between conditions 1-2 or
2-3 or that do not satisfy the �regulartity� condition. In such
cases the theorem cannot be applied.
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Thank you for your attention!
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