
Algorithms
and Data
Structures

(c) Marcin
Sydow

Reminder:
Graphs

Graph Repre-
sentation

Visiting
Binary Trees

Graph
Traversal

Summary

Algorithms and Data Structures
Graphs: basic concepts and algorithms

(c) Marcin Sydow

Algorithms
and Data
Structures

(c) Marcin
Sydow

Reminder:
Graphs

Graph Repre-
sentation

Visiting
Binary Trees

Graph
Traversal

Summary

Topics covered by this lecture:

Graphs - Reminder

Trees

Visiting Trees (in-order,post-order,pre-order)

Graph Traversals (BFS, DFS)

Algorithms
and Data
Structures

(c) Marcin
Sydow

Reminder:
Graphs

Graph Repre-
sentation

Visiting
Binary Trees

Graph
Traversal

Summary

Graph De�nitions: Reminder

Directed graph (digraph): G = (V ,E), V - vertex (node)
set, E ⊆ V × V - arc set (each arc is an ordered pair
(u, v), where u, v ∈ V . (u - source, v - target of the arc)

Undirected graph - the only di�erence is that edge
(undirected arc) (u, v) is an un-ordered pair, u, v ∈ V .

Another variant: bidirected graphs.

Self-loops usually not allowed. If multiple arcs(edges)
possible - multi-graph. Generalisation: arc are not pairs,
but n-tuples - hypergraph.

e = (u, v) is incident to u, v , and u, v are adjacent.

In-degree, out-degree of a node (directed); degree
(undirected)

sum of degrees is always even

Algorithms
and Data
Structures

(c) Marcin
Sydow

Reminder:
Graphs

Graph Repre-
sentation

Visiting
Binary Trees

Graph
Traversal

Summary

Graph De�nitions: Reminder (2)

Subgraph G ′ ⊆ G .

Subgraph G ′ induced by a subset of nodes V ′ ⊂ V :
G ′ = (V ′,E ∩ (V ′ × V ′))

Weights on arcs/edges (w : E → R)

Path (v0, ..., vk) of length k . Simple path: nodes do not
repeat.

Cycle (path: v0 == vk). Hamiltonian cycle, Euler Cycle.

Connected graph (there is a path between any pair of
nodes), weakly connected: path can ignore the arc
direction

strongly connected component (SCC): a maximum strongly
connected subgraph

SCCs partition V (no intersections)

Algorithms
and Data
Structures

(c) Marcin
Sydow

Reminder:
Graphs

Graph Repre-
sentation

Visiting
Binary Trees

Graph
Traversal

Summary

Number of edges

if |V | == n and |E | = m then m = O(n2)

by graph size we usually mean m + n

if m = o(n2) the graph is called sparse

full graph (has all possible edges): maximum number of
edges

Undirected full graph has exactly (n − 1)n/2 edges

empty graph - no edges (only nodes)

how many edges a connected graph must have at least?

n − 1

Algorithms
and Data
Structures

(c) Marcin
Sydow

Reminder:
Graphs

Graph Repre-
sentation

Visiting
Binary Trees

Graph
Traversal

Summary

Number of edges

if |V | == n and |E | = m then m = O(n2)

by graph size we usually mean m + n

if m = o(n2) the graph is called sparse

full graph (has all possible edges): maximum number of
edges

Undirected full graph has exactly (n − 1)n/2 edges

empty graph - no edges (only nodes)

how many edges a connected graph must have at least?
n − 1

Algorithms
and Data
Structures

(c) Marcin
Sydow

Reminder:
Graphs

Graph Repre-
sentation

Visiting
Binary Trees

Graph
Traversal

Summary

Trees: Reminder

Undirected tree: a connected graph without cycles (acyclic)

undirected tree ⇔ connected and has exactly (n− 1) edges

leaf, interior node

Forest: an acyclic graph (not necessarily connected)

rooted tree: ancestor, descendant, child, sibling, subtree,

height (of tree or node): maximum distance to a leaf,
depth (of node) distance to the root

ordered tree (rooted tree with order on children)

binary tree (ordered tree with max of 2 children of each
node)

DAG: Directed Acyclic Graph

Algorithms
and Data
Structures

(c) Marcin
Sydow

Reminder:
Graphs

Graph Repre-
sentation

Visiting
Binary Trees

Graph
Traversal

Summary

How to represent graphs in computer?

Various graph representations are possible. The choice depends
on which operations should be fast and how much memory is
available.
The most important operations on graphs:

node/edge information access (weights, existence, etc.)

navigation (typically: list of all outgoing arcs/edges)

update (adding/removing nodes or edges/arcs)

input/construction/conversion/output

Algorithms
and Data
Structures

(c) Marcin
Sydow

Reminder:
Graphs

Graph Repre-
sentation

Visiting
Binary Trees

Graph
Traversal

Summary

Computer Representations of Graphs

unordered sequence of edges (fast update, good as
input/output format)

adjacency matrices (extremely fast access, much memory,
very slow extension; can be adapted to sparse graphs)

adjacency arrays (good for static graphs)

adjacency lists (least memory, easy update, relatively easy
navigation)

Except few cases (which?), translation from one representation
to another is linear (fast).

Algorithms
and Data
Structures

(c) Marcin
Sydow

Reminder:
Graphs

Graph Repre-
sentation

Visiting
Binary Trees

Graph
Traversal

Summary

Algebraic Graph Theory

Many interesting connections between linear algebra and
graphs, for example:

A - adjacency matrix: Ak
i ,j == how many paths from i to j of

length exactly k

Algebraic Graph Theory: studies such connections between
matrices and graphs, etc.

Algorithms
and Data
Structures

(c) Marcin
Sydow

Reminder:
Graphs

Graph Repre-
sentation

Visiting
Binary Trees

Graph
Traversal

Summary

Binary Tree

A rooted tree - some node is distinguished and is called root.

(On picture, the root is at the top). Case: complete tree.

A binary tree is a rooted tree, and each node has maximum of 2
nodes, which are distinguishable (left and right).

A binary tree can be represented as a linked structure:

each node has links to its children

the only access to the whole tree is a pointer to the root

Algorithms
and Data
Structures

(c) Marcin
Sydow

Reminder:
Graphs

Graph Repre-
sentation

Visiting
Binary Trees

Graph
Traversal

Summary

Traversing Trees

A general scheme:

traverse(v):

previsit(v)

for each child w of v: traverse(w)

postvisit(v)

If postvisit is empty we call it pre-order, if previsit is empty �
post-order.

Post-order can be used to compute height, pre-order for
computing depth in trees.

Algorithms
and Data
Structures

(c) Marcin
Sydow

Reminder:
Graphs

Graph Repre-
sentation

Visiting
Binary Trees

Graph
Traversal

Summary

Visiting Binary Trees

In a special case of binary tree we have 3 important variants:

in-order

pre-order

post-order

Algorithms
and Data
Structures

(c) Marcin
Sydow

Reminder:
Graphs

Graph Repre-
sentation

Visiting
Binary Trees

Graph
Traversal

Summary

in-order order

inorderVisit(BinTree currentNode){

if currentNode == null return

inorderVisit(currentNode.left)

visit(currentNode)

inorderVisit(currentNode.right)

}

Algorithms
and Data
Structures

(c) Marcin
Sydow

Reminder:
Graphs

Graph Repre-
sentation

Visiting
Binary Trees

Graph
Traversal

Summary

pre-order order

preorderVisit(BinTree currentNode){

if currentNode == null return

visit(currentNode)

preorderVisit(currentNode.left)

preorderVisit(currentNode.right)

}

Algorithms
and Data
Structures

(c) Marcin
Sydow

Reminder:
Graphs

Graph Repre-
sentation

Visiting
Binary Trees

Graph
Traversal

Summary

post-order order

postorderVisit(BinTree currentNode){

if currentNode == null return

postorderVisit(currentNode.left)

postorderVisit(currentNode.right)

visit(currentNode)

}

Algorithms
and Data
Structures

(c) Marcin
Sydow

Reminder:
Graphs

Graph Repre-
sentation

Visiting
Binary Trees

Graph
Traversal

Summary

Example: expression trees

Evaluate an expression: 2,+,3,/,6

A parser �rst transforms it to an expression tree. The root is
the �last� operator, numbers are in leaves, interior nodes are the
other operators.

Now, the evaluation is very easy:

eval(r):

if isLeaf(r) return number(r)

a = eval(leftChild(r))

b = eval(rightChild(r))

return a operator(r) b

Algorithms
and Data
Structures

(c) Marcin
Sydow

Reminder:
Graphs

Graph Repre-
sentation

Visiting
Binary Trees

Graph
Traversal

Summary

Example: how to avoid recursion with a stack?

in-order in binary trees:

stack = empty; v = root

1:

if (v.left != null):

stack.push(v)

v = v.left

goto 1

2:

visit(v)

if (v.right != null):

v = v.right

goto 1

if (!stack.empty())

v = stack.pop()

goto 2

Algorithms
and Data
Structures

(c) Marcin
Sydow

Reminder:
Graphs

Graph Repre-
sentation

Visiting
Binary Trees

Graph
Traversal

Summary

Graph Traversal: a General Scheme

Systematic traverse through the whole graph: start visiting
from a single node and moving along edges from already visited
nodes, visit each node and edge available from s exactly once

In each iteration: select next already visited node and visit all
its outgoing, non-visited edges, and non-visited end-nodes

In the above general scheme, by specifying the way of selecting
the next visited node we obtain various re�nements of the
algorithm

Algorithms
and Data
Structures

(c) Marcin
Sydow

Reminder:
Graphs

Graph Repre-
sentation

Visiting
Binary Trees

Graph
Traversal

Summary

BFS and DFS - Important Variants of Graph
Traversal

Two particularly important graph traversals:

BFS (breadth-�rst search) (next nodes to visit are kept on
queue)

DFS (depth-�rst search) (next nodes to visit are kept on
stack)

Both produce resulting forest and (as a side product) classify
each edge into one of four categories:

tree (T) edge (edge of the resulting forest)

forward (F) edge (in the same branch of the forest)

backward (B) (as above but counter-directed)

cross (C) (between two di�erent branches or trees)

Algorithms
and Data
Structures

(c) Marcin
Sydow

Reminder:
Graphs

Graph Repre-
sentation

Visiting
Binary Trees

Graph
Traversal

Summary

Breadth-�rst search (BFS)

graph G<V,E>; s - start node; d - distance from s, p - parent

for-each node in V:

node.color = white; u.d = infinity; u.p = null

s.color = gray; s.d = 0; queue.in(s)

while(!queue.empty()){

currNode = queue.out()

process(currNode)

for-each node in currNode.adjList:

if (node.color == white):

queue.in(node)

node.color = gray

node.d = currNode.d + 1

node.p = currNode

currNode.color = black

}

white - untouched; gray - waiting for processing; black - processed

Algorithms
and Data
Structures

(c) Marcin
Sydow

Reminder:
Graphs

Graph Repre-
sentation

Visiting
Binary Trees

Graph
Traversal

Summary

Properties of BFS

O(m + n) (dom. op.: set or update distance)

the resulting tree (recorded in the parent array) speci�es
the shortest paths from s to other nodes

Algorithms
and Data
Structures

(c) Marcin
Sydow

Reminder:
Graphs

Graph Repre-
sentation

Visiting
Binary Trees

Graph
Traversal

Summary

Depth-�rst search (DFS) � a Recursive Version

d � discovery time; f � �nishing time

DFS(){

time = 0

for-each v in V:

v.color = white; v.parent = null

for-each v in V:

if (v.color == white):

recursiveDFS(v)

}

recursiveDFS(GraphNode v){

v.d = time++

v.color = gray

process(v)

for-each u in v.adjList:

if (u.color == white):

u.parent = v

recursiveDFS(u)

v.color = black

v.f = time++

}

white - before d is set; gray between d is set and f is set; black after f is set

Algorithms
and Data
Structures

(c) Marcin
Sydow

Reminder:
Graphs

Graph Repre-
sentation

Visiting
Binary Trees

Graph
Traversal

Summary

Properties of DFS

O(m + n) time complexity

DFS can be obtained by modi�cation of BFS - Queue
should be replaced by Stack

for any u, v ∈ V either the intervals (u.d , u.f), (v .d , v .f)
are disjoint or one is completely included in the other (so
called: �parentheses� structure)

when DFS �rst visits an edge (u, v): T if v white, B if v
gray, F or C if v black

undirected DFS: only T or B edges may happen (no C or F)

DAG DFS: only T may happen (a good test for acyclicity)

Algorithms
and Data
Structures

(c) Marcin
Sydow

Reminder:
Graphs

Graph Repre-
sentation

Visiting
Binary Trees

Graph
Traversal

Summary

Applications of DFS

DFS has many important applications, for example:

directed: topological sort

directed: �nding SCCs

undirected: �nding BCC (bi-connected components: maximum
subsets of edges, so that any 2 edges in BCC lie on a common simple
cycle; bridges or articulation points connect di�erent BCCs; bridge:
an edge which removed increases the number of SCCs; articulation
point - a node with such property)

Algorithms
and Data
Structures

(c) Marcin
Sydow

Reminder:
Graphs

Graph Repre-
sentation

Visiting
Binary Trees

Graph
Traversal

Summary

Topological Sort

G - a DAG. �Sort� the nodes so that all the edges point
from left to right

application in scheduling: (V � set of tasks, (u, v) � task u

must be done before v)

Topological Sort:

1 compute �nishing times v .f , v ∈ V with DFS on G

2 sort decreasingly by v .f

Remark: If cycles are present ideal sorting impossible, but it minimises the

�backward� edges

Algorithms
and Data
Structures

(c) Marcin
Sydow

Reminder:
Graphs

Graph Repre-
sentation

Visiting
Binary Trees

Graph
Traversal

Summary

Computing SCCs

Application of DFS to compute strongly connected
components:

1 compute �nishing times v .f , v ∈ V with DFS on G

2 �reverse� the arcs in G (transposed adjacency matrix)

3 run DFS on the reversed graph; apply decreasing order of
v .f in the main loop of DFS

4 result: separate trees == separate SCCs

Algorithms
and Data
Structures

(c) Marcin
Sydow

Reminder:
Graphs

Graph Repre-
sentation

Visiting
Binary Trees

Graph
Traversal

Summary

Questions/Problems:

all basic graph de�nitions

trees (de�nitions)

graph computer representations (di�erences/advantages,
etc.)

binary trees and visiting them: in-order, pre-order,
post-order

classi�cation of edges in BFS and DFS

BFS + properties

DFS + properties

compare DFS and BFS

Topological Sort (high-level idea)

(*) Other applications of DFS

Algorithms
and Data
Structures

(c) Marcin
Sydow

Reminder:
Graphs

Graph Repre-
sentation

Visiting
Binary Trees

Graph
Traversal

Summary

Thank you for your attention

	Reminder: Graphs
	Graph Representation
	Visiting Binary Trees
	Graph Traversal
	Summary

