
Algorithms
and Data
Structures

(c) Marcin
Sydow

Priority
Queue

Example
Applications

Extensions of
Priority
Queue

Binomial
Heap

Summary

Algorithms and Data Structures
Priority Queue

(c) Marcin Sydow

Algorithms
and Data
Structures

(c) Marcin
Sydow

Priority
Queue

Example
Applications

Extensions of
Priority
Queue

Binomial
Heap

Summary

Topics covered by this lecture:

Priority Queue

Naive Implementations

Binary Heap

HeapSort and other examples

Extended Priority Queues

(*) Binomial Heap

Algorithms
and Data
Structures

(c) Marcin
Sydow

Priority
Queue

Example
Applications

Extensions of
Priority
Queue

Binomial
Heap

Summary

Priority Queue De�nition

Priority Queue (PQ) is an abstract data structure supporting
the following operations:

insert(T e) // add to PQ a new element with assigned
priority

T �ndMin() // return the element with minimum priority

T delMin() // return and delete the elt. with min. prior.

(optional operation: construct(sequence<T> s) // create a PQ
given set of elements)

Each element has associated �priority�.

One can also consider a �max�-type priority queue, de�ned
analogously

Note: priority queue is not a �specialised� queue

(why? hint: remember the de�nition of queue)

Algorithms
and Data
Structures

(c) Marcin
Sydow

Priority
Queue

Example
Applications

Extensions of
Priority
Queue

Binomial
Heap

Summary

Implementations of Priority Queue

The implementations evolve, for example:

�naive� (as an array or list)

Binary Heap (1964 Williams; Floyd 1964)

Binomial Heap (1978 Vuillemin)

Pairing Heap* (1986 Fredman, Sedgewick, Sleator, Tarjan;
2000 Iacono; Pettie 2005)

Fibonacci Heap* (1987 Fredman, Tarjan)

�Thin� Heaps and �Fat� Heaps* (1999 Kaplan, Tarjan)

* - not in this lecture

Algorithms
and Data
Structures

(c) Marcin
Sydow

Priority
Queue

Example
Applications

Extensions of
Priority
Queue

Binomial
Heap

Summary

Naive implementations

unsorted sequence:
insert: O(1), deleteMin: O(n), construct: O(n)

sorted sequence:
insert: O(n), deleteMin: O(1): construct: O(n log(n))

(sequence can be an array or linked list)

Algorithms
and Data
Structures

(c) Marcin
Sydow

Priority
Queue

Example
Applications

Extensions of
Priority
Queue

Binomial
Heap

Summary

Binary Heap

Binary Heap is a complete1 binary tree satisfying the following
�heap-order condition� (for each (non-root) node x):

(priority of parent[x]) ≤ (priority of x)

Observations:

minimum priority is at root

priorities on each path from the root to a leaf form a
non-decreasing sequence

height of n-element binary heap is Θ(log(n)) (due to
completeness)

(there is also a �max� variant of the above de�nition)

1Leaves (except may be the right-most ones, that can be 1 level
higher), have equal depths

Algorithms
and Data
Structures

(c) Marcin
Sydow

Priority
Queue

Example
Applications

Extensions of
Priority
Queue

Binomial
Heap

Summary

Array Representation of Binary Heap

Due to the fact that it is a complete binary tree, Binary Heap
can be compactly represented as an array:

Navigation:
(assume the root is under index 1)

parent[i] == i/2 (for non-root i)

i .left == 2i , i .right == 2i + 1 (for non-leaf i)

Algorithms
and Data
Structures

(c) Marcin
Sydow

Priority
Queue

Example
Applications

Extensions of
Priority
Queue

Binomial
Heap

Summary

Restoring the Heap Order

Two helper, internal operations.
Both assume the heap order is correct except the position i:

upheap(i) (call when (key of parent[i] > key of i), assert:
heap ok below i): the key under i goes up until ok

downheap(i) (call when one of children of i has lower key
than i, assert: heap ok above i and for both its subtrees):
the key under i goes down until ok

Both operations use O(log(n)) key comparisons (n - number of
elements)

Algorithms
and Data
Structures

(c) Marcin
Sydow

Priority
Queue

Example
Applications

Extensions of
Priority
Queue

Binomial
Heap

Summary

Upheap

Example of upheap(i) implementation:

upheap(i) // i > 0, heap ok under i

key = heap[i]

parent = i/2

while((parent > 0) && (heap[parent] > key))

heap[i] = heap[parent]

i = parent

parent /= 2

heap[i] = key

Algorithms
and Data
Structures

(c) Marcin
Sydow

Priority
Queue

Example
Applications

Extensions of
Priority
Queue

Binomial
Heap

Summary

Downheap

Example of downheap(i) implementation:

downheap(i)

l = 2i // left son

r = 2i + 1 // right son

if l <= n and heap[l] < heap[i]:

min = l

else:

min = i

if r <= n and heap[r] < heap[min]: // n is the size of heap

min = r

if min != i:

swap(i,min) // swap the elements under indexes (not indexes themselves)

downheap(min) // go down

Remarks: recursion used here only for keeping the code short,

swapping too. Both can be avoided to make the implementation

more e�cient.

Algorithms
and Data
Structures

(c) Marcin
Sydow

Priority
Queue

Example
Applications

Extensions of
Priority
Queue

Binomial
Heap

Summary

Priority Queue implemented on Binary Heap

(data size: number of elements (n), dom. oper.: comparison of

priorities)

insert(x): add x to the bottom and upheap(bottom)
(O(log(n)))

�ndMin(): return root (O(1))

delMin(): move the bottom element to the root and
downheap(root) (O(log(n)))

What is the complexity of construct?

Interestingly, construct has fast, Θ(n) implementation.

Algorithms
and Data
Structures

(c) Marcin
Sydow

Priority
Queue

Example
Applications

Extensions of
Priority
Queue

Binomial
Heap

Summary

Priority Queue implemented on Binary Heap

(data size: number of elements (n), dom. oper.: comparison of

priorities)

insert(x): add x to the bottom and upheap(bottom)
(O(log(n)))

�ndMin(): return root (O(1))

delMin(): move the bottom element to the root and
downheap(root) (O(log(n)))

What is the complexity of construct?

Interestingly, construct has fast, Θ(n) implementation.

Algorithms
and Data
Structures

(c) Marcin
Sydow

Priority
Queue

Example
Applications

Extensions of
Priority
Queue

Binomial
Heap

Summary

Complexity of construct

(naive: n × insert (which gives Θ(nlog(n))))
faster way:

for(i = n/2; i > 0; i--) downHeap(i)

Analysis: downHeap is called at most 2d times for nodes of
depth d , each such call costs O(h − d) (where h is the height
of heap). Thus, the total cost is:

O(
∑

0≤d<h

2d (h−d)) = O(2h
∑

0≤d<h

h − d

2h−d
) = O(2h

∑
j≥1

j

2j
) = O(n)

(the last equation holds because:
∑

i≥1 i2
−i = 2)

Algorithms
and Data
Structures

(c) Marcin
Sydow

Priority
Queue

Example
Applications

Extensions of
Priority
Queue

Binomial
Heap

Summary

∑
i≥1 i2−i = 2: a proof

�nite geometric series:
∑n−1

i=0 qi = 1−qn

1−q
for q 6= 1

in�nite geometric series:∑
i≥0 q

i = limn→∞
1−qn

1−q
= 1

1−q
for 0 ≤ q < 1

Thus:∑
i≥0 2

−i = 1 + 1/2 + 1/4 + ... = 2 (a geometric series with q = 1/2)

Now:2∑
i≥1

i2−i =
∑
i≥1

2−i+
∑
i≥2

2−i+
∑
i≥3

2−i+... = (1+1/2+1/4+...) = 2

(the �rst equality is due to the re-grouping of terms (2−i occurs
in exactly i �rst sums))

2More generally,
∑

k≥0 kx
k = x

(1−x)2
, for any |x | < 1 (take derivative of

in�nite geometric series to obtain it)

Algorithms
and Data
Structures

(c) Marcin
Sydow

Priority
Queue

Example
Applications

Extensions of
Priority
Queue

Binomial
Heap

Summary

Example: HeapSort

How to sort a sequence s with a Priority Queue?

(pq is an object representing priority queue)

while(s.hasNext())

pq.insert(s.next())

while(!pq.isEmpty())

result.add(pq.delMin())

data size: # elements (n), dom. op.: comparison
time complexity: Θ(nlog(n)), space complexity: Θ(n)

Notice: if we put the min element to the last released place in
the array, we obtain O(1) space complexity!

Algorithms
and Data
Structures

(c) Marcin
Sydow

Priority
Queue

Example
Applications

Extensions of
Priority
Queue

Binomial
Heap

Summary

Example: HeapSort

How to sort a sequence s with a Priority Queue?
(pq is an object representing priority queue)

while(s.hasNext())

pq.insert(s.next())

while(!pq.isEmpty())

result.add(pq.delMin())

data size: # elements (n), dom. op.: comparison
time complexity: Θ(nlog(n)), space complexity: Θ(n)

Notice: if we put the min element to the last released place in
the array, we obtain O(1) space complexity!

Algorithms
and Data
Structures

(c) Marcin
Sydow

Priority
Queue

Example
Applications

Extensions of
Priority
Queue

Binomial
Heap

Summary

Other examples of applications of priority queues

Priority queues are typically used in greedy algorithms (for
selecting a next element in the solution in the e�cient way), for
example:

Hu�man Code computation

Dijkstra's shortest-path algorithm (on other lecture)

Prim's minimum spanning tree algorithm (on other lecture)

etc.

Algorithms
and Data
Structures

(c) Marcin
Sydow

Priority
Queue

Example
Applications

Extensions of
Priority
Queue

Binomial
Heap

Summary

Extensions of Priority Queue

Addressable Priority Queue

construct(sequence<T> s)

H insert(T e) // as before but returns a handle to the inserted element

T �ndMin()

T delMin()

decreaseKey(H pointer, T newPriority)

delete (H pointer)

In addition: Mergeable Priority Queue:

merge(PQ priorityQueue1, PQ priorityQueue2)

Algorithms
and Data
Structures

(c) Marcin
Sydow

Priority
Queue

Example
Applications

Extensions of
Priority
Queue

Binomial
Heap

Summary

Complexities of Priority Queue Operations

operation unsort. sort. binary heap binomial heap

insert 1 n lg n lg n
�ndMin n 1 1 lg n
delMin n 1 lg n lg n
decreaseKey 1 n lg n lg n
delete 1 n lg n lg n
merge 1 n n lg n

(the entries have implicit O(.) around them)

Binomial Heap: a bit more advanced implementation of priority
queue that supports fast merge (and keeps other operations
fast)

Algorithms
and Data
Structures

(c) Marcin
Sydow

Priority
Queue

Example
Applications

Extensions of
Priority
Queue

Binomial
Heap

Summary

Binomial Trees

A binomial tree Bi of degree i is a rooted tree de�ned
recursively as follows:

B0 consists of a single node

Bi : the root has i sons: Bi−1,Bi−2, ...,B0 (in such order)

Properties of Bi :

height: i

has exactly

(
i

j

)
(binomial coe�cient) nodes at level j

has exactly 2i nodes in total

can be obtained by adding a Bi−1 as a left-most son of a
root of a Bi−1

(Notice the analogies with the properties of binomial
coe�cients!)

Algorithms
and Data
Structures

(c) Marcin
Sydow

Priority
Queue

Example
Applications

Extensions of
Priority
Queue

Binomial
Heap

Summary

Binomial Heap

Binomial Heap is a list of binomial trees sorted decreasingly by
degrees (from left to right), where each binomial tree satis�es
the heap order.

Properties of a n-element binomial heap:

it consists of O(logn) binomial trees

Bi is its part only if the i − th bit in the binary
representation of n is set to 1

(both properties are implied by the fact that |Bi | == 2i and
properties of binary representation of numbers)

Algorithms
and Data
Structures

(c) Marcin
Sydow

Priority
Queue

Example
Applications

Extensions of
Priority
Queue

Binomial
Heap

Summary

Operations on Binomial Heap

�ndMin: min is among the O(logn) roots

merge: similar to adding two binary numbers. Summing
two 'ones' on position i : merging two binomial trees Bi to
obtain one Bi+1 (remind the last property of binomial
trees). The tree with lower key becomes the root, the
other becomes its right-most son. The summing goes
through both lists of binomial trees from left to right (thus
it has O(logn) complexity)

insert: merge with a 1-element binomial heap (O(logn))

delMin: �nd the root with the lowest key (O(logn)), cut it
out, merge the list of its sons (being a correct binomial
heap itself!) with the rest of the remaining part (O(logn))

decreaseKey: similarly as in binary heap (O(logn))

delete: move it to the root, cut, then as in delMin
(O(logn))

Algorithms
and Data
Structures

(c) Marcin
Sydow

Priority
Queue

Example
Applications

Extensions of
Priority
Queue

Binomial
Heap

Summary

Questions/Problems:

De�nition of Priority Queue

Complexities on naive implementation (list, array)

Binary Heap de�nition

Binary Heap represented as Array

Priority Queue operations on Binary Heap (+ complexities)

HeapSort and other examples of applications

Extended Priority Queues (operations)

(*) Binomial Trees and Binomial Heap

(*) Priority Queue implemented on Binomial Heap
(operations + complexities)

Algorithms
and Data
Structures

(c) Marcin
Sydow

Priority
Queue

Example
Applications

Extensions of
Priority
Queue

Binomial
Heap

Summary

Thank you for your attention

	Priority Queue
	Example Applications
	Extensions of Priority Queue
	Binomial Heap
	Summary

